首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells.  相似文献   

2.
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.  相似文献   

3.
Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events.  相似文献   

4.
5.
Multiple protein kinase activities were found in the luminal segment of the renal proximal tubule cell plasma membrane (brush border membrane). Membranes were extracted with Lubrol, with no loss in activity, and the extract was chromatographed on diethylaminoethyl cellulose with a salt gradient. With protamine as substrate, activity eluted in two peaks, designated I and IIb, and was cyclic AMP independent. With histone VII-S, one peak, designated IIa, appeared, which eluted slightly ahead of IIb and was cyclic AMP dependent. The three activities eluted in their original patterns following rechromatography. Histone kinase activity in the combined IIa+b fraction was stimulated threefold by cyclic nucleotides (Ka = 0.013 and 0.94 μM for cyclic AMP and cyclic GMP, respectively) by increasing V. Cyclic AMP binding activity eluted with histone kinase activity. Rechromatography of IIa+b on diethylaminoethyl cellulose containing 1 μm cyclic AMP resulted in passage through the column of most of the histone kinase activity (IIa) prior to the salt gradient, but retention of kinase IIb, which again eluted in its original position. Characterization of the separated enzymes revealed that kinase I was highly specific for protamine and totally insensitive to cyclic AMP and a specific protein inhibitor of cyclic AMP-dependent kinases. Kinase IIa was relatively specific for histones and was completely inhibited by the protein inhibitor. Kinase IIb was nonspecific, catalyzing phosphorylation of protamine, casein, histones, and phosvitin in decreasing order of activity, and was insensitive to cyclic AMP and the protein inhibitor. Exposure of intact brush border membranes to elevated temperatures revealed that phosphorylation of intrinsic membrane proteins and protamine was thermolabile, whereas cyclic AMP-dependent histone kinase activity was relatively thermostable. These findings implicate cyclic AMP-independent protamine kinases in the cyclic AMP-independent autophosphorylation of the brush border membrane.  相似文献   

6.
MAPK (Mitogen Activated Protein Kinase) is a Ser/Thr kinase, which plays a crucial role in plant growth and development, transferring the extra cellular stimuli into intracellular response etc. Manual identification of these MAPK in the plant genome is tedious and time taking process. There are number of online servers which predict the P-site (phosphorylation site), find the motifs and domain but there is no specific tool which can identify all them together. In order to identify the P-Site, phosphorylation site consensus sequences and domain of the MAPK in plant genome, we developed a tool, MAP Kinase analyzer. MAP kinase analyzer take protein sequence as input in the fasta format and the output of tool includes: 1) The prediction of the phosphorylation site viz., Serine (S), Threonine (T), and Tyrosine (Y), Contex, Position, Score and phosphorylating kinase as well as the graphical output; 2) Phosphorylation site consensus sequence pattern for different kinases and 3) Domain information about the MAPK's. The MAP kinase analyser tool and supplementary files can be downloaded from http://www.bioinfogbpuat/mapk_OWN_1/.  相似文献   

7.
We demonstrate for the first time the role of phosphorylation in the regulation of activities of enzymes responsible for inactivation of aminoglycoside antibiotics. The aminoglycoside phosphotransferase VIII (APHVIII) from the actinobacterial strain Streptomyces rimosus ATCC 10970 is an enzyme regulated by protein kinases. Two serine residues in APHVIII are shown to be phosphorylated by protein kinases from extracts of the kanamycin-resistant strain S. rimosus 683 (a derivative of strain ATCC 10970). Using site-directed mutagenesis and molecular modeling, we have identified the Ser146 residue in the activation loop of the enzyme as the key site for Ca2+-dependent phosphorylation of APHVIII. Comparison of the kanamycin kinase activities of the unphosphorylated and phosphorylated forms of the initial and mutant APHVIII shows that the Ser146 modification leads to a 6–7-fold increase in the kanamycin kinase activity of APHVIII. Thus, Ser146 in the activation loop of APHVIII is crucial for the enzyme activity. The resistance of bacterial cells to kanamycin increases proportionally. From the practical viewpoint, our results increase prospects for creation of highly effective test systems for selecting inhibitors of human and bacterial serine/threonine protein kinases based on APHVIII constructs and corresponding human and bacterial serine/threonine protein kinases.  相似文献   

8.
The physical characteristics of cAMP-dependent protein kinases and their, regulatory subunits from calf uterus, human uterus, human mammary tumor, and rat pituitary and of cAMP-binding protein from calf uterus were determined by quantitative polyacrylamide gel electrophoresis in buffers containing the detergent, Triton X-100. In the four tissues, protein kinases of either type A1, with molecular weight (Mr) = 200,000, or type B, of Mr = 80,000, or both, previously described were found. Trivial charge isomerism, or size isomerism, exists within each of the two classes, Protein Kinase A and B. The protein kinase recombined from the regulatory and catalytic subunits is not significantly different from the crude or isolated protein kinase. Protein Kinases A and B exist each in either one of the isozyme forms I and II but these are not reflected in polyacrylamide gel electrophoresis at pH 10.2. Protein Kinase B appears to be a product of the partial proteolysis of Protein Kinase A. The regulatory subunits of Protein Kinases A from the four tissues are distinct from those of Protein Kinases B. No physical distinction exists between regulatory subunits derived from isozyme forms I and II. cAMP-Binding Proteins A and B are physically indistinguishable, by polyacrylamide gel electrophoresis at pH 10.2, from the regulatory subunits of Protein Kinases A and B, respectively.  相似文献   

9.
The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)‐based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase‐substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high‐quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high‐resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B‐cell receptor signaling. Overall, these studies provide global insights into kinase‐mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.  相似文献   

10.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

11.
The EphA2 receptor tyrosine kinase signals through two distinct mechanisms, one regulated by tyrosine phosphorylation and the other by serine/threonine phosphorylation. Serine 892 (S892) is one of the major serine/threonine phosphorylation sites in EphA2, but little is known about its regulation and function. S892 is located in the linker connecting the EphA2 kinase and SAM domains, and is part of a cluster of five phosphorylated residues that includes the well characterized S897. EphA2 can be phosphorylated on S897 by the RSK, AKT and PKA kinases to promote a non-canonical form of signaling that plays an important role in cancer malignancy. Here we show that the Protein Kinase C (PKC) family phosphorylates the EphA2 S892 motif in vitro and in cells. By using a newly developed phosphospecific antibody, we detected EphA2 S892 phosphorylation in a variety of cell lines. As expected for a PKC target site, the PKC activator 12-O-tetradecanoylphorbol-13-acetate (TPA) increases S892 phosphorylation whereas the broad-spectrum PKC inhibitor Go 6983 inhibits both basal and TPA-induced S892 phosphorylation. Besides phosphorylating S892, PKC can also increase EphA2 phosphorylation on S897 through the MEK kinase, which regulates the ERK-RSK signaling axis. We also found that S892 and S897 phosphorylation induced by PKC activation can be downregulated by ephrin ligand-induced EphA2 canonical signaling. Our data reveal that the PKC family contributes to the phosphorylation cluster in the EphA2 kinase-SAM linker, which regulates EphA2 non-canonical signaling and cancer malignancy.  相似文献   

12.
《Gene》1997,185(1):11-17
Whilst searching for a mammalian homologue of the Drosophila glass gene we cloned a mouse cDNA whose deduced sequence encodes a 614 amino acid (aa) protein with ten Cys2-His2 (C2H2) zinc finger (Zf) motifs. Zfp64 is expressed in all developing and mature mouse tissues examined, except the mouse erythroleukemia (MEL) cell line. Zfp64 maps to the distal region of mouse chromosome 2 close to lens opacity 4 (Lop4), a semidominant cataract mutation. Sequence analysis shows that Zfp64 has multiple potential phosphorylation sites for casein kinase II (CK II), protein kinase C (PKC), tyrosine kinase (TK) and c-AMP- and c-GMP-dependent protein kinase (cA/GMPDPK).  相似文献   

13.
Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry–based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts.  相似文献   

14.
Three cyclic AMP-independent acetyl-CoA carboxylase kinases (A, B1 and B2) have been isolated from lactating rat mammary gland, using phosphocellulose chromatography, high performance gel filtration, and affinity chromatography on casein-Sepharose and phosvitin-Sepharose. These protein kinases have been identified with previously described kinases by the following criteria. Kinase A phosphorylates the same sites on rabbit mammary acetyl-CoA carboxylase as acetyl-CoA carboxylase kinase 2, which was originally described as a contaminant of rabbit mammary acetyl-CoA carboxylase purified by the poly(ethylene glycol)procedure. Kinase A will henceforth be referred to as acetyl-CoA carboxylase kinase-2. Kinase B1 has been identified with casein kinase II by its heparin sensitivity, elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. Kinase B2 has been identified with casein kinase I by its elution behaviour on phosphocellulose, molecular mass, substrate specificity and subunit composition. The three kinases phosphorylate distinct sites on acetyl-CoA carboxylase. Phosphorylation by either casein kinase I or II does not affect enzyme activity. However, acetyl-CoA carboxylase kinase 2 inactivates acetyl-CoA carboxylase reversibly, in an identical manner to cyclic-AMP-dependent protein kinase, and phosphorylates sites located on identical peptides. Acetyl-CoA carboxylase kinase-2 can, however, be distinguished from the free catalytic subunit of cyclic-AMP-dependent protein kinase by its molecular mass, its substrate specificity, its elution behaviour on phosphocellulose, and its complete lack of sensitivity to the protein inhibitor of cyclic-AMP-dependent protein kinase. We also present evidence that phosphorylation of acetyl-CoA carboxylase by cyclic-AMP-dependent protein kinase occurs directly and not via a bicyclic cascade system as proposed by other laboratories.  相似文献   

15.
Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria.  相似文献   

16.
The bioinformatic search of the plant homologues of human protein kinases SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK2, and PASK, involved in the phosphorylation of microtubular proteins and regulation of cell division, was carried out. The plant homologues of protein kinases SLK, MAST2, and AURKA were identified. It was found that the closest homologue of human protein kinase AURKA is a protein A7PY12_VITVI (STALK, Serine-Threonine Aurora-Like Kinase) from grapes (Vitis vinifera), whose function is still unknown. The reconstruction and analysis of the 3D-structure of the STALK protein confirmed its relation to the group of AURKA-like protein kinases.  相似文献   

17.
The catalogues of protein kinases, the essential effectors of cellular signaling, have been charted in Metazoan genomes for a decade now. Yet, surprisingly, using bioinformatics tools, we predicted protein kinase structure for proteins coded by five related human genes and their Metazoan homologues, the FAM69 family. Analysis of three-dimensional structure models and conservation of the classic catalytic motifs of protein kinases present in four out of five human FAM69 proteins suggests they might have retained catalytic phosphotransferase activity. An EF-hand Ca2+-binding domain in FAM69A and FAM69B proteins, inserted within the structure of the kinase domain, suggests they may function as Ca2+-dependent kinases. The FAM69 genes, FAM69A, FAM69B, FAM69C, C3ORF58 (DIA1) and CXORF36 (DIA1R), are by large uncharacterised molecularly, yet linked to several neurological disorders in genetics studies. The C3ORF58 gene is found deleted in autism, and resides in the Golgi. Unusually high cysteine content and presence of signal peptides in some of the family members suggest that FAM69 proteins may be involved in phosphorylation of proteins in the secretory pathway and/or of extracellular proteins.  相似文献   

18.
Plant genomes encode hundreds of protein kinases, yet only for a small fraction of them precise functions and phosphorylation targets have been identified. Recently, we applied a chemical-genetic approach to sensitize the tomato serine/threonine kinase Pto to analogs of PP1, an ATP-competitive and cell-permeable small-molecule inhibitor. The Pto kinase confers resistance to Pst bacteria by activating immune responses upon specific recognition of bacterial effectors. By using PP1 analogs in combination with the analog-sensitive Pto, we shed new light on the role of Pto kinase activity in effector recognition and signal transduction. Here we broaden the use of this chemical-genetic approach to another defense-related plant protein kinase, the MAP kinase LeMPK3. In addition, we show that analog-sensitive but not wild-type kinases are able to use unnatural N6-modified ATP analogs as phosphodonors that can be exploited for tagging direct phosphorylation targets of the kinase of interest. Thus, sensitization of kinases to analogs of the small-molecule inhibitor PP1 and ATP can be an effective tool for the discovery of cellular functions and phosphorylation substrates of plant protein kinases.Key words: chemical genetics, gatekeeper, LeMPK3, protein kinase, Pto, small-molecule inhibitor  相似文献   

19.
The phosphorylation of insulin-like growth factor binding protein-I (IGFBP-1) alters its binding affinity for insulin-like growth factor I (IGF-I) and thus regulates the bioavailability of IGF-I for binding to the IGF-I receptor. The kinase(s) responsible for the phosphorylation of IGFBP-1 has not been identified. This study was designed to characterize the IGFBP-1 kinase activity in HepG2 human hepatoma cells, a cell line that secretes IGFBP-1 primarily as phosphorylated isoforms. IGFBP-1 kinase activity was partially purified from detergent extracts of the cells by phosphocellulose chromatography and gel filtration. Two kinases of approximate Mr 150,000 (peak I kinase) and Mr 50,000 (peak II kinase) were identified. Each kinase phosphorylated IGFBP-1 at serine residues that were phosphorylated by intact HepG2 cells. The kinases were distinct based on their differential sensitivity to inhibition by heparin (IC50 = 2.5 and 16.5 μg/ml, peak I and II kinase, respectively) and inhibition by the isoquinoline sulfonamide CKI-7 (IC50 = 50 μM and 100 μM, peak I and II kinase, respectively). In addition, a tenfold molar excess of nonradioactive GTP relative to [gamma-32P]ATP lowered the incorporation of 32P into IGFBP-1 by 80% when the reaction was catalyzed by the peak I kinase, whereas GTP had no effect on the reaction catalyzed by the peak II kinase. In the presence of polylysine, IGFBP-1 was radiolabeled by the partially purified kinase activity when [gamma-32P]GTP served as the phosphate donor indicating the presence of casein kinase II activity. Furthermore, IGFBP-1 was phosphorylated by purified casein kinase I and casein kinase II at sites phosphorylated by the peak I and peak II kinases. Our data suggest that at least two kinases could be responsible for the phosphorylation of IGFBP-1 in intact HepG2 cells and that the kinases are related to the casein kinase family of protein kinases. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号