首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
p18INK4C属于细胞周期蛋白激酶抑制剂,其突变或缺失与某些肿瘤的发生密切相关,如T细胞白血病,但目前关于p18调控T细胞发育及功能的研究还鲜有报道,其调控机制仍不明确.本研究利用p18基因敲除(p18KO)小鼠,系统地研究了胸腺中T细胞的早期发育及成熟T细胞的增殖和活化功能,并利用逆转录病毒的方法在Lin?造血干祖细胞上过表达p18,移植4个月后检测其对T细胞的影响.结果表明,p18的缺失对胸腺T细胞的早期发育影响不明显,但随着p18KO小鼠周龄的增加会促进CD4+CD8+双阳性T细胞的数量,此外,p18还通过影响CD3+成熟T细胞的细胞周期进程及IFN-?,GATA3,Tbx21和Foxp3等的表达增强脾脏T细胞的增殖和活化;进一步在造血干祖细胞上过表达p18后会影响T细胞的发育和成熟,进而纠正T细胞在数量上的异常.本研究阐释了p18在T细胞早期发育及后期活化中的调控机制,并证实可通过在干祖细胞水平改变p18的表达进而影响T细胞的分化,这对p18调控T细胞功能异常及参与T细胞白血病的发生提供了新的理论依据和重要的研究价值.  相似文献   

3.
4.
H-Ras must adhere to the plasma membrane to be functional. This is accomplished by posttranslational modifications, including palmitoylation, a reversible process whereby H-Ras traffics between the plasma membrane and the Golgi complex. At the plasma membrane, H-Ras has been proposed to occupy distinct sublocations, depending on its activation status: lipid rafts/detergent-resistant membrane fractions when bound to GDP, diffusing to disordered membrane/soluble fractions in response to GTP loading. Herein, we demonstrate that H-Ras sublocalization is dictated by its degree of palmitoylation in a cell type-specific manner. Whereas H-Ras localizes to detergent-resistant membrane fractions in cells with low palmitoylation activity, it locates to soluble membrane fractions in lineages where it is highly palmitoylated. Interestingly, in both cases GTP loading results in H-Ras diffusing away from its original sublocalization. Moreover, tilting the equilibrium between palmitoylation and depalmitoylation processes can substantially alter H-Ras segregation and, subsequently, its biochemical and biological functions. Thus, the palmitoylation/depalmitoylation balance not only regulates H-Ras cycling between endomembranes and the plasma membrane but also serves as a key orchestrator of H-Ras lateral diffusion between different types of plasma membrane and thereby of H-Ras signaling.  相似文献   

5.
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.  相似文献   

6.
The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.  相似文献   

7.
This study adopts a combined computational and experimental approach to determine the mechanical, structural, and metabolic properties of isolated chondrocytes cultured within three-dimensional hydrogels. A series of linear elastic and hyperelastic finite-element models demonstrated that chondrocytes cultured for 24 h in gels for which the relaxation modulus is <5 kPa exhibit a cellular Young’s modulus of ~5 kPa. This is notably greater than that reported for isolated chondrocytes in suspension. The increase in cell modulus occurs over a 24-h period and is associated with an increase in the organization of the cortical actin cytoskeleton, which is known to regulate cell mechanics. However, there was a reduction in chromatin condensation, suggesting that changes in the nucleus mechanics may not be involved. Comparison of cells in 1% and 3% agarose showed that cells in the stiffer gels rapidly develop a higher Young’s modulus of ~20 kPa, sixfold greater than that observed in the softer gels. This was associated with higher levels of actin organization and chromatin condensation, but only after 24 h in culture. Further studies revealed that cells in stiffer gels synthesize less extracellular matrix over a 28-day culture period. Hence, this study demonstrates that the properties of the three-dimensional microenvironment regulate the mechanical, structural, and metabolic properties of living cells.  相似文献   

8.
为探讨葡萄糖调节蛋白GRP78和GRP94在小鼠脑发育过程中的生物学意义,利用蛋白质免疫印迹、免疫荧光及RNA印迹技术,检测了发育不同时期小鼠脑组织中GRP78、GRP94的表达及分布情况.结果显示:小鼠脑发育过程中GRP78、GRP94的表达在时间和空间上呈现出显著差异,在脑发育的早中期GRP78表达水平高于GRP94,随发育的进程GRP78不断下降而GRP94逐渐升高,至胚胎发育晚期GRP94表达水平高于GRP78.在E16.5的不同脑区,GRP78的表达呈现出从端脑到后脑逐渐递减的“浓度梯度”分布,而GRP94在不同脑区中表达相同.小鼠出生后,二者作为应激蛋白在脑组织中的表达没有明显的差异性.免疫荧光结果显示,GRP78和GRP94在大脑组织中的分布基本相同,神经细胞和神经胶质细胞的细胞质均有分布.这些观察得到的结果提示,GRP78和GRP94与神经细胞分化和脑的形态建成有关,它们分别在脑发育的不同时期起作用.  相似文献   

9.
10.
11.
The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates.  相似文献   

12.
The evolutionarily conserved lethal giant larvae (Lgl) tumor suppressor gene has an essential role in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. However, the precise molecular mechanism by which the Lgl carries out its function remains obscure. In the current study, we have identified Ran-binding protein M (RanBPM) as a novel binding partner of Mgl-1, a mammalian homolog of Drosophila tumor suppressor protein lethal (2) giant larvae (L(2)gl) by yeast two-hybrid screening. RanBPM seems to act as a scaffolding protein with a modulatory function with respect to Mgl-1. The Mgl-1 and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM resulted in inhibition of Mgl-1 degradation, and thereby extended the half-life of Mgl-1. Furthermore, the ability of Mgl-1 activity in cell migration and colony formation assay was enhanced by RanBPM. Taken together, our findings reveal that RanBPM plays a novel role in regulating Mgl-1 stability and contributes to its biological function as a tumor suppressor.  相似文献   

13.
14.
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.  相似文献   

15.
16.
17.
ObjectivesThe extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort.MethodsBone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group.ResultsStandardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score.ConclusionMarkers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号