首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.  相似文献   

2.
Background, aim and scope  Forest operations use large amounts of energy, which must be considered when life cycle assessment (LCA) methodology is applied to forest products. Forest management practices differ considerably between countries and may also differ within a country. This paper aims to identify and compare the environmental burdens from forest operations in Sweden and Spain focused on pulpwood production and supply to pulp mills. Materials and methods  To perform the analysis, the main forest plantations were investigated as well as the most important tree species used in pulp mills in both countries: eucalyptus and, Norway spruce and Scots pine, were taken into account for the Spanish and Swedish case studies, respectively. Energy requirements for pulpwood production and supply to Spanish and Swedish pulp mills are evaluated in this paper. All forest operations from site preparation to extraction of felled wood to the delivery point at the roadside are included within the system boundaries as well as wood transport from forest landing to the pulp mill gate. Seedling and machinery production are excluded from the system boundaries due to lack of field data. The impact assessment phase was carried out according to the Swedish Environmental Management Council and, in particular, the impact categories assessed in forest and agricultural LCAs (global warming, acidification, eutrophication and photochemical oxidant formation) were analysed. SimaPro 7.10 software was used to perform the impact assessment stage. Results  Different types of wood are produced in both case studies: softwood in Sweden and hardwood in Spain, with higher production of round wood and biomass per hectare in Sweden. Total energy use for pulpwood production and supply are in a similar order of magnitude, up to 395 MJ and 370 MJ/m3 solid under bark in Spain and Sweden, respectively. Field operations, such as silviculture and logging, are more energy-intensive in the Spanish case study. However, secondary hauling of pulpwood to pulp mill requires more energy in the Swedish case study. These important differences are related to different forest management practices as well as to pulpwood supply to the pulp mill. The eventual imports of pulpwood, application of pesticides, thinning step or final felling considerably affects energy requirements, which are reflected on the environmental results. Discussion  Although differences between both case studies were observed, several stages were investigated: wood delivery to the pulp mill by road, harvesting and forwarding, contribute considerably to acidification, eutrophication and global warming potential in both cases. The type of wood, the machines used in forest operations (mechanised or motor-manual), the use of fossil fuels and the amount of wood produced influence the results. These differences must be kept in mind in comparative studies between such different countries. Conclusions  The results obtained in this work allow one to forecast the importance of forest operations in LCA of forest products (in this case, wood pulp) and the influence of energy use in the results. Special attention has been paid in the inventory analysis stage for both case studies. It is possible to gain a better environmental performance in both case studies if alternative practices are considered, mainly focused on site preparation and stand tending in the Spanish system and on pulpwood supply in the Swedish one. Recommendations and perspectives  This study provides useful information that can assist forest-based industries in the aim of increasing their sustainability. Future work will focus on the study of several transport alternatives of pulpwood supply including railway, road and ship. In addition, pulpwood processing in Spanish and Swedish paper pulp mills considered to be representative of the “state of art” will be carried out in order to get a complete picture of this kind of forest-based industry. In addition, the use of biofuels (such as forest biomass) instead of fossil fuels and CO2 uptake of wood via photosynthesis will be carried out in order to have a complete perspective of forest ecosystems.  相似文献   

3.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

4.
Copper (Cu) deficiency in eucalypts is associated with tree deformation and reduced wood production from plantations. Presently, diagnosis of the early stages of Cu deficiency is unreliable as critical tissue Cu concentrations for tree growth have not been defined. Since wood quality is usually impaired in advance of tree growth, a biochemical test for Cu deficiency was sought for three Eucalyptus species commonly used in plantation forestry (E. globulus Labill., E. grandis Hill ex Maiden and E. urophylla Blake). Foliar Cu requirements for catechol oxidase activity were determined in a glasshouse sand culture study with 10 rates of Cu supply (0, 10-15, 10-14, 10-13, 10-12, 10-11, 10-10, 10-9, 10-7 and 10-5 M). In contrast to shoot dry weight, which only responded to Cu supply in E. urophylla, foliar Cu concentration and catechol oxidase activity, in 140-day-old seedlings, increased with the addition of Cu in all species. Stem lignification also responded to Cu supply in parallel to the activity of catechol oxidase. Functional Cu requirements of 2.4, 2.1 and 2.6 mg kg-1 dry weight for catechol oxidase activity in E. globulus, E. grandis and E. urophylla, respectively, were derived from statistical models fitted to the relationship between catechol oxidase activity and Cu concentrations in recently matured leaves.  相似文献   

5.
The ungurahua palm (Oenocarpus bataua subsp.bataua) is widely used throughout the Amazon Basin for its thatch, fibers, wood, and edible fruits. The fruits of this species are especially important to indigenous peoples and yield a high quality oil. This study examines the use of this species by the Siona people of the Ecuadorian Amazon in the Cuyabeno Faunistic Reserve. The reproductive phenology, fruit production, and relationship between vegetative characteristics and fruit production is explored here. Fruit production varies greatly from palm to palm with a range of approximately 500–7000 fruits biennially. This amounts to approximately 700 kg/ha every two years. Height, diameter breast height (dbh), and number of leaves on an individual are poor predictors of tree productivity. Reproductive histories of individual palms are examined. The economic potential of this species and the implications of overharvesting are discussed.  相似文献   

6.
Hardwood tree species in forest, plantation, and urban environments (temperate regions of the world) are important biological resources that play a significant role in the economy and the ecology of terrestrial ecosystems, and they have aesthetic and spiritual value. Because of these many values of hardwood tree species, preserving forest tree biodiversity through the use of biotechnological approaches should be an integral component in any forestry program in addition to large-scale ecologically sustainable forest management and preservation of the urban forest environment. Biotechnological tools are available for conserving tree species as well as genetic characterization that will be needed for deployment of germplasm through restoration activities. This review concentrates on the biotechnological tools available for conserving, characterizing, evaluating, and enhancing hardwood forest tree biodiversity. We focus mainly on species grown for lumber and wood products, not species grown mainly for fiber (pulp and paper production). We also present a brief summary of the importance of non-wood forest products from temperate hardwood tree species (a research area that needs further development using biotechnological techniques) and a few case studies for preserving forest tree biodiversity.  相似文献   

7.
Eucalyptus globulus Labill is a foundation tree species over its disjunct distribution in southeastern Australia. The quality of its pulp makes it the most important hardwood species in the world. The importance of E. globulus prompted the establishment of common gardens from seed collected across its geographic range. This enabled us to study the genetic structure of the species, its population boundaries, and gene flow using 444 trees from different open-pollinated families that were genotyped at 16 microsatellite loci. A Bayesian clustering method was used to resolve five genetically distinct groups across the geographical range. These groups were identified as regions, which varied in diameter from 38 to 294?km and contain 4 to 16 putative populations. For two of these regional groups, we used spatial autocorrelation analysis based on assignment of trees to their natural stands to examine gene flow within each region. Consistent significant local-scale spatial structure occurred in both regions. Pairs of individuals within a region showed significant genetic similarity that extended beyond 40?km, suggesting distant movement of pollen. This suggests that breeding populations in E. globulus are much bigger than traditionally accepted in eucalypts. Our results are important for the management of genetic diversity and breeding populations in E. globulus. Similar studies of a variety of eucalypts pollinated by insects and birds will determine whether the local-scale genetic structure of E. globulus is unusual.  相似文献   

8.
The aim of this work was to study the sensitivity of carbon dioxide (CO2) emissions from wood energy to different forest management regimes when aiming at an integrated production of timber and energy biomass. For this purpose, the production of timber and energy biomass in Norway spruce [Picea abies (L.) Karst] and Scots pine (Pinus sylvestris L.) stands was simulated using an ecosystem model (SIMA) on sites of varying fertility under different management regimes, including various thinning and fertilization treatments over a fixed simulation period of 80 years. The simulations included timber (sawlogs, pulp), energy biomass (small‐sized stem wood) and/or logging residues (top part of stem, branches and needles) from first thinning, and logging residues and stumps from final felling for energy production. In this context, a life cycle analysis/emission calculation tool was used to assess the CO2 emissions per unit of energy (kg CO2 MWh?1) which was produced based on the use of wood energy. The energy balance (GJ ha?1) of the supply chain was also calculated. The evaluation of CO2 emissions and energy balance of the supply chain considered the whole forest bioenergy production chain, representing all operations needed to grow and harvest biomass and transport it to a power plant for energy production. Fertilization and high precommercial stand density clearly increased stem wood production (i.e. sawlogs, pulp and small‐sized stem wood), but also the amount of logging residues, stump wood and roots for energy use. Similarly, the lowest CO2 emissions per unit of energy were obtained, regardless of tree species and site fertility, when applying extremely or very dense precommercial stand density, as well as fertilization three times during the rotation. For Norway spruce such management also provided a high energy balance (GJ ha?1). On the other hand, the highest energy balance for Scots pine was obtained concurrently with extremely dense precommercial stands without fertilization on the medium‐fertility site, while on the low‐fertility site fertilization three times during the rotation was needed to attain this balance. Thus, clear differences existed between species and sites. In general, the forest bioenergy supply chain seemed to be effective; i.e. the fossil fuel energy consumption varied between 2.2% and 2.8% of the energy produced based on the forest biomass. To conclude, the primary energy use and CO2 emissions related to the forest operations, including the production and application of fertilizer, were small in relation to the increased potential of energy biomass.  相似文献   

9.
Chemical composition is one of the key characteristics that determines wood quality and in turn its suitability for different end products and applications. The inclusion of chemical compositional traits in forest tree improvement requires high‐throughput techniques capable of rapid, non‐destructive and cost‐efficient assessment of large‐scale breeding experiments. We tested whether Fourier‐transform infrared (FTIR) spectroscopy, coupled with partial least squares regression, could serve as an alternative to traditional wet chemistry protocols for the determination of the chemical composition of juvenile wood in Scots pine for tree improvement purposes. FTIR spectra were acquired for 1,245 trees selected in two Scots pine (Pinus sylvestris L.) full‐sib progeny tests located in northern Sweden. Predictive models were developed using 70 reference samples with known chemical composition (the proportion of lignin, carbohydrates [cellulose, hemicelluloses and their structural monosaccharides glucose, mannose, xylose, galactose, and arabinose] and extractives). Individual‐tree narrow‐sense heritabilities and additive genetic correlations were estimated for all chemical traits as well as for growth (height and stem diameter) and wood quality traits (density and stiffness). Genetic control of the chemical traits was mostly moderate. Of the major chemical components, highest heritabilities were observed for hemicelluloses (0.43–0.47), intermediate for lignin and extractives (0.30–0.39), and lowest for cellulose (0.20–0.25). Additive genetic correlations among chemical traits were, except for extractives, positive while those between chemical and wood quality traits were negative. In both groups (chemical and wood quality traits), correlations with extractives exhibited opposite signs. Correlations of chemical traits with growth traits were near zero. The best strategy for genetic improvement of Scots pine juvenile wood for bioenergy production is to decrease and stabilize the content of extractives among trees and then focus on increasing the cellulose:lignin ratio.  相似文献   

10.

Key message

Variation in tree biomass among African savanna species of equal size is driven by a wide inter-specific variation in wood specific gravity.

Abstract

Tree form and taper is a fundamental component of tree structure and has been used for over a century in forestry to estimate timber yields and in ecological theories of scaling laws. Here, we investigate variation in form factor in the context of biomass in African savannas. Biomass is a fundamental metric of vegetation state, yet in African savannas it remains unclear whether variation in form factor F (taper) or wood specific gravity (G) is a more dominant driver of biomass differences between tree species of equal stem diameter and height. Improving our knowledge of vertical mass distribution in savanna trees provides insight into differences in life strategies, such as tradeoffs between production, disturbance avoidance, and water storage. Here, we destructively harvested 782 stems in a savanna woodland near Kruger National Park, South Africa, and measured whole tree wet mass, wood specific gravity, water content, and form factor. We found that three of four dominant species can vary in mass by over twofold, yet inter-specific variation in taper was low and taper did not vary significantly between common species (P > 0.05) (species-mean form factors ranged from F = 0.57 to 0.77, where cone F =  $0.\bar{3}$ , quadratic paraboloid F = 0.5, cylinder F = 1.0). Comparison of a general biomass allometry model to species-specific models supported the conclusion that the large difference in biomass between species of the same size was explained almost entirely (R 2 = 0.97) by including species-mean G with D and H in a general allometric equation, where F was constant. Our results suggest that inter-specific variation in wood density, not form factor, is the primary driver of biomass differences between species of the same size. We also determined that a simple analytical volume-filling model accurately relates wood specific gravity of these species to their water and gas content (R 2 = 0.68). These results indicate which species use a wide spectrum of water storage strategies in savanna woodlands, adhering to a trade-off between the benefits of denser wood or increased water storage.  相似文献   

11.
We combined economic and life‐cycle analyses in an integrated framework to ascertain greenhouse gas (GHG) intensities, production costs, and abatement costs of GHG emissions for ethanol and electricity derived from three woody feedstocks (logging residues only, pulpwood only, and pulpwood and logging residues combined) across two forest management choices (intensive and nonintensive) and 31 harvest ages (year 10–year 40 in steps of 1 year) on reforested and afforested lands at the production level for slash pine (Pinus elliottii) in the Southern United States. We assumed that wood chips and wood pellets will be used to produce ethanol and generate electricity, respectively. Production costs and GHG intensities of ethanol and electricity were lowest for logging residues at the optimal rotation age for both forest management choices. Opportunity cost related with the change in rotation age was a significant determinant of the variability in the overall production cost. GHG intensity of feedstocks obtained from afforested land was lower than reforested land. Relative savings in GHG emissions were higher for ethanol than electricity. Abatement cost of GHG emissions for ethanol was lower than electricity, especially when feedstocks were obtained from a plantation whose rotation age was close to the optimal rotation age. A carbon tax of at least $25 and $38 Mg?1 CO2e will be needed to promote production of ethanol from wood chips and electricity from wood pellets in the US, respectively.  相似文献   

12.
The genus Eucalyptus includes over 700 species, some of which are the most widely planted hardwoods worldwide. Each species and subspecies of Eucalyptus present different characteristics regarding its wood quality and yield. This fact makes it very important to work with known species/subspecies so as to optimize handling and conservation of forest resources. Some of them are morphologically very similar, making it difficult to differentiate by simple observation. This is the case with Euclyptus globulus ssp globulus and E. globulus ssp maidenii, which can only be distinguished in the adult tree. These issues can be avoided using well-characterized seeds. This can be quite expensive, especially for the small growers. An alternative approach is to develop simple methods for the differentiation of the two subspecies. In this work, we develop a quick method, based on SCAR molecular markers derived from RAPD molecular markers, for the differentiation of the subspecies of E. globulus, in particular E. globulus ssp globulus and E. globulus ssp maidenii.  相似文献   

13.
Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to rise as the worldwide consumption of forest products increases. Tree improvement of temperate hardwoods has lagged behind that of coniferous species and hardwoods of the genera Populus and Eucalyptus. The development of marker systems has become an almost necessary complement to the classical breeding and improvement of hardwood tree populations for superior growth, form, and timber characteristics. Molecular markers are especially valuable for determining the reproductive biology and population structure of natural forests and plantations, and the identity of genes affecting quantitative traits. Clonal reproduction of commercially important hardwood tree species provides improved planting stock for use in progeny testing and production forestry. Development of in vitro and conventional vegetative propagation methods allows mass production of clones of mature, elite genotypes or genetically improved genotypes. Genetic modification of hardwood tree species could potentially produce trees with herbicide tolerance, disease and pest resistance, improved wood quality, and reproductive manipulations for commercial plantations. This review concentrates on recent advances in conventional breeding and selection, molecular marker application, in vitro culture, and genetic transformation, and discusses the future challenges and opportunities for valuable temperate (or “fine”) hardwood tree improvement.  相似文献   

14.
In dryland environments 3–5 year rotations of tree crops and agriculture represent a major potential bioenergy feedstock and a means to restore landscape hydrologic balances and phytoremediate sites, while maintaining food production. In soils with low natural fertility, the long‐term viability of these systems will be critically affected by site nutrient status and subsequent cycling of nutrients. A nutrient assimilation index (NAI) was developed to allow comparison of species and tree component nutrient assimilation and to optimize nutrient management, by quantifying different strategies to manage site nutrients. Biomass, nutrient export and nutrient use efficiency were assessed for three short rotation tree crop species. Nutrient exports following harvest at 3 years of high density (4000 trees ha?1) were consistently higher in Pinus radiata, with values of 85 kg ha?1 of N, 11kg ha?1 of P, and 62 kg ha?1 of K, than Eucalyptus globulus and Eucalyptus occidentalis. Component NAI was generally in the order of leaf?1 for N in leaves of P. radiata to 4.7 Mg kg?1 for P in stem‐wood of E. occidentalis, indicating higher sustainability of wood biomass compared with leaf biomass. The leaves for each species contained between 40 and 60% of the total nutrient contents while comprising around 25–30% of the total biomass. These nutrient exports via biomass removal are similar to those that follow 3 years of wheat production in the same region, indicating there is no additional drawdown of nutrient reserves during the tree cropping phase of the rotation.  相似文献   

15.
Eucalyptus nitens is an important forestry species grown for pulp and paper production in the temperate, summer-rainfall regions of South Africa. A tree improvement programme has been ongoing at the Institute for Commercial Forestry Research for two decades, but genetic improvement in the species has been slow due to delayed and infrequent flowering and seed production. Three trials were established, firstly, to quantify the gains that have been made in the first generation of improvement in the breeding programme and, secondly, to establish whether a number of seed source and orchard variables influence the performance of the progeny. These variables were the amount of flowering trees in the seed orchard, year of seed collection, seed orchard origin and composition of seed orchard bulks. Diameter at breast height and tree heights were measured in the trials at between 87 and 97 months after establishment, and timber volumes and survival were calculated. Improved seed orchard bulks performed significantly better (p?<?0.01) than unimproved controls in the field trials. Genetic gains ranging from 23.2 to 164.8 m3?ha?1 were observed over the unimproved commercial seed. There were significant differences (p?<?0.01) in progeny growth between the levels of seed orchard flowering, with higher levels of flowering (≥40 %) producing substantially greater progeny growth than lower flowering levels (≤20 %). The seed orchard had no effect on progeny growth in this trial series. This suggests that seed collected from any of the four seed orchards tested will produce trees with significant improvement in growth.  相似文献   

16.
Biotechnological production of fuels and chemicals from renewable resources is an appealing way to move from the current petroleum-based economy to a biomass-based green economy. Recently, the feedstocks that can be used for bioconversion or fermentation have been expanded to plant biomass, microbial biomass, and industrial waste. Several microbes have been engineered to produce chemicals from renewable resources, among which Escherichia coli is one of the best studied. Much effort has been made to engineer E. coli to produce fuels and chemicals from different renewable resources. In this paper, we focused on E. coli and systematically reviewed a range of fuels and chemicals that can be produced from renewable resources by engineered E. coli. Moreover, we proposed how can we further improve the efficiency for utilizing renewable resources by engineered E. coli, and how can we engineer E. coli for utilizing alternative renewable feedstocks. e.g. C1 gases and methanol. This review will help the readers better understand the current progress in this field and provide insights for further metabolic engineering efforts in E. coli.  相似文献   

17.
Cupressus sempervirens L. (Mediterranean cypress) has been traditionally used as a multipurpose tree. In the past, its wood was extensively used as a highly durable raw material in the Mediterranean, but nowadays, production of cypress wood is constrained by the lack of exploitable woods and plantations and by the spread of bark canker. In this study, the wood properties of canker-resistant clones specifically meant for timber production were assessed in two different locations. The aim was to evaluate the effect of genotype and environment on physical and mechanical properties of wood and its bonding quality. Four ramets of each of 10 clones were sampled in both sites, wood density, shrinkage, hardness, and the bonding strengths when glued together with two different adhesives were determined, and clonal repeatabilities and genetic correlations were also estimated. Clonal consistency for wood traits was moderate to high within and across environments, far higher than for growth- and morphological traits. Indications are that selection based exclusively on tree height would result in a lower wood density and hardness. Bonding strength reflected the combination of the material properties and the selected adhesive: For adhesive M (polyvinyl acetate dispersion), it was negatively correlated with density, whilst for adhesive E (emulsion polymerization isocyanate), it was not as influenced. Thus, even favouring higher-density wood (and therefore not only hardness but also higher shrinkages), adhesive E would give excellent bonding.  相似文献   

18.
Samples of arabinogalactan (AG) were isolated by aqueous extraction from wood of different larch species (Larix sibirica Ledeb., Larix gmelinii (Rupr.) Rupr., Larix cajanderi Mayr., and Larix olgensis var. Koreana) and studied by HPLC, IR spectroscopy, and quantitative 13C NMR spectroscopy. The wood of the studied larch species was shown to contain significant amount of arabinogalactan (10–17% of the a.d.w. mass) and could be a source of its industrial production. The studied AG samples had similar structural and molecular-mass characteristics. This fact could facilitate the product standardization during its industrial production both from the wood of a single larch species and from mixed raw materials.  相似文献   

19.

Background

Despite empirical support for an increase in ecosystem productivity with species diversity in synthetic systems, there is ample evidence that this relationship is dependent on environmental characteristics, especially in structurally more complex natural systems. Empirical support for this relationship in forests is urgently needed, as these ecosystems play an important role in carbon sequestration.

Methodology/Principal Findings

We tested whether tree wood production is positively related to tree species richness while controlling for climatic factors, by analyzing 55265 forest inventory plots in 11 forest types across five European countries. On average, wood production was 24% higher in mixed than in monospecific forests. Taken alone, wood production was enhanced with increasing tree species richness in almost all forest types. In some forests, wood production was also greater with increasing numbers of tree types. Structural Equation Modeling indicated that the increase in wood production with tree species richness was largely mediated by a positive association between stand basal area and tree species richness. Mean annual temperature and mean annual precipitation affected wood production and species richness directly. However, the direction and magnitude of the influence of climatic variables on wood production and species richness was not consistent, and vary dependent on forest type.

Conclusions

Our analysis is the first to find a local scale positive relationship between tree species richness and tree wood production occurring across a continent. Our results strongly support incorporating the role of biodiversity in management and policy plans for forest carbon sequestration.  相似文献   

20.
Small coffee farms around Mount Kenya in Kenya contain many planted and remnant tree species but little is known in the region about the relationship between trees on farms and the methods and dynamics of coffee production. Shifts in production may alter tree diversity and potentially impact on future biodiversity conservation efforts by affecting niches available for indigenous trees on farms. Here, knowledge was gathered on how changes in coffee production on 180 small farms around Mount Kenya may affect tree diversity, categorizing farms according to coffee yield levels over a period of five years as increasing, decreasing or stable production. Tree species richness, abundance and composition were analyzed using species accumulation curves, Rènyi diversity profiles, rank abundance and ecological distance ordinations, and the effects of coffee production examined using quasi-Poisson generalized linear regressions. Species richness were positively correlated with tree basal area but negatively related to coffee, banana and maize yields value. A difference in average tree species richness, abundance and basal area on increasing farms was observed compared to the decreasing and stable farms, even though formal tests on richness and densities differences were inconclusive. These dynamics do not significantly influence vegetation structure but seem to have a bearing on species composition on farms of different coffee production. The overall low abundance (23 % of trees) but high richness (78 % of species) of indigenous trees on coffee farms could change markedly if the dynamics observed in the current study persist, indicating the need for the development of intensified multi-species cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号