首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures–openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores–the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them.  相似文献   

2.
Pollen apertures were analyzed among the subfamilies Persoonioideae (seven genera; ca. 95 spp.), Sphalmioideae (one genus; one spp.), and Camarvonioideae (one genus; two spp.). Pollen was examined by light microscopy, cryosection, and transmission electron microscopy. Completed studies of pollen apertures among Grevilleoideae (ca. 40 genera; ca. 800 spp.), one of two major subfamilies in Proteaceae, provide a basis for comparison and analysis of aperture evolution among these subfamilies. Aperture characters within Persoonioideae are unique among Proteaceae examined to date. Five distinct aperture types occur among the three subfamilies, three of which (Placospermum, Persoonia, Bellendena) are restricted to Persoonioideae. Sphalmioideae and Camarvonioideae each exhibit a unique aperture organization. The most primitive aperture organization, and one unique to Placospermum, exhibits three main features: 1) a thin, granular endexine continuous around the grain; 2) a heterogeneous foot layer throughout the grain with increased disruptions at the aperture; and 3) only slight differences in exine characters between apertural and nonapertural regions. The Persoonia aperture type represents the next stage of aperture evolution which involves loss of endexine, restriction of a heterogeneous foot layer to the aperture, and marked differences in exine characters between apertural and nonapertural regions. The uniformly homogeneous ektexine in both nonapertural and aperture regions in Bellendena has developed independently. Sphalmium exhibits a primitively thin granular endexine though the restriction of endexine to the aperture is a derived condition. Carnarvonia exhibits several pollen characters also found among Grevilleoideae including: 1) a homogeneous nonapertural ektexine; 2) a slightly heterogeneous apertural ektexine; 3) a lamellate/granulate endexine organized into irregularly shaped “clumps” clustered around the aperture; and 4) a clear demarcation between apertural and nonapertural exine. These characters support the hypothesis that Carnarvonia may have diverged early from the pre-Grevilleoids.  相似文献   

3.
Despite the taxonomic value of pollen morphology within the tribe Vernonieae, a detailed study of the pollen of the subtribe Elephantopinae is still lacking. The pollen morphology of ten species, representing three of the four genera of the subtribe, Elephantopus, Pseudoelephantopus and Orthopappus, was studied with LM, SEM, and TEM. The pollen of all the species studied was found to be echinolophate, although the differences in aperture features and both sculpture and exine structure allowed recognizing two pollen types. The species of Elephantopus (except for E. elongatus) and Pseudoelephantopus share the regular or more or less regular ridges pattern, the colporate condition but with the ectoapertures little developed, and the acaveate exine structure. From the sculpture and the apertures, the pollen of Caatinganthus harleyi was found to be similar to that of Elephantopus and Pseudoelephantopus. The pollen morphology of the monotypic Orthopappus, which is shared with that of E. elongatus, was further investigated for the first time. We found that it differs from that of the other species in having an irregular pattern of ridges, colporate condition but with a well-developed ectoapertures, and caveate exine. Additional studies of the exine structure and apertures features, coupled with molecular phylogeny, are needed to understand the evolution of pollen characters and re-evaluate the intergeneric relationships within the tribe.  相似文献   

4.
Pollen grains of tribe Sanguisorbeae (Rosaceae, Rosoideae) were examined using scanning electron microscopy to identify useful characters, test taxonomic and phylogenetic hypotheses among genera, and elucidate pollen character evolution based on a molecular phylogeny. Aperture number, aperture structure, pollen shape, and exine sculpturing were variable within Sanguisorbeae and were used to delineate six pollen types. Four types (I–IV) were observed only in subtribe Sanguisorbinae whereas two types (V–VI) were found only in subtribe Agrimoniinae. Pollen grains of tribe Sanguisorbeae were generally subprolate to spheroidal in shape, had operculate or pontoperculate apertures, and had three apertures, except for Margyricarpus (tetraperturate). Exine sculpturing within Sanguisorbinae represented variations of striate, verrucate, rugulate, and perforate patterns often with microechinate sculpturing. Striate exine patterns and prolate shapes characterized the pollen of the Agrimoniinae, except for the microechinate-verrucate pattern and subprolate to spheroidal shapes observed in Hagenia. Pollen characters are most useful at the generic level and, when mapped on to a molecular phylogenetic tree of the tribe, are concordant with a monophyletic Agrimoniinae and a clade comprising Margyricarpus + Acaena + Polylepis + Cliffortia + Sanguisorba in the Sanguisorbinae. Outgroup comparison indicated that operculate colpi, three apertures, and polymorphism for striate or microverrucate exines represented primitive states for tribe Sanguisorbeae.  相似文献   

5.
Apertures are key characters of pollen grains with systematic importance in angiosperms. They function as sites for pollen tube exit, water uptake, transfer of recognition substances and accommodation of volume changes. Not all pollen has apertures; inaperturate pollen (lacking obvious apertures) characterizes many angiosperm groups, especially in early divergent angiosperms and monocots, but also eudicots. In order to expand our knowledge of the systematic distribution, possible functional significance and development of inaperturate pollen in angiosperms, this review focuses on inaperturate and cryptoaperturate (with hidden apertures) pollen in the large eudicot clade, which comprises about 75% of present‐day angiosperm species. It includes new TEM observations of inaperturate pollen from four exemplar taxa selected from different parts of the eudicot phylogeny. Two categories of inaperturate (including cryptoaperturate) pollen occur in eudicots. (1) Sterile attractant or feeding pollen associated with functional dioecy has evolved iteratively at least six times in conjunction with complex breeding systems in the core eudicots. (2) Fertile pollen has evolved numerous times independently throughout eudicots, though generally in a relatively small number of individual taxa. Notable exceptions are the petaliferous crotonoid Euphorbiaceae s.s., in which fertile inaperturate pollen occurs in c. 1500 species, and two subfamilies of Apocynaceae s.l. (Secamonoideae and Asclepiadoideae) with c. 2500 species with fertile inaperturate pollen in pollinia. Fertile inaperturate pollen is sometimes (but not always) associated with an aquatic habit, parasitism, insectivory, heterostyly, anemophily or pollinia. Most fertile inaperturate pollen has a thin exine, or the exine is largely restricted to isolated components (muri, protuberances, subunits) separated by thinner areas which probably function as apertures. In cryptoaperturate pollen, the aperture is covered by continuous exine which probably has a protective function, similar to an operculum. Developmentally, inaperturate pollen is not associated with any particular tetrad type or meiotic spindle orientation (unlike some apertures) due to the absence of a colpal shield of endoplasmic reticulum or other organelles and hence is independent of microsporogenesis type. The lack of a colpal shield during the tetrad stage of development permits complete deposition of first primexine and then exine around each microspore, possibly mediated by the action of the DEX1 protein. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 29–48.  相似文献   

6.
DULBERGER  R. 《Annals of botany》1989,63(4):421-431
The apertural wall in tricolpate pollen of Linum grandiflorumwas investigated in order to understand its functioning duringdesiccation and rchydration. Whole and sectioned pollen grainswere studied with light or electron microscopy and by cytochemicalmeans. The areas of the apertures were examined in fresh drypollen, in grains moistened on agar gel or removed from compatiblestigmas, and in pollen from mature undehisced anthers The intine was found to consist of an inner ß-glucanlayer and an outer pectic layer. At the apertures the pecticlayer is thickened and overlaid by a ß-glucan layer.The pectinaceous intine stains red with basic fuchsin. The presenceof a third wall layer, the medine, was not confirmed. The aperturalintine thickenings possess considerable imbibitional capacityand at rehydration they appear as swollen lenticular bodies A procedure is described for obtaining intact exine free grains(EFG's) and whole, separated exines of L. grandiflorum. Invariably,the released EFG's consisted of protoplasts encased in the cellulosicintine. In most grains the outer intine remained attached tothe separated exine In L. grandiflorum the outer wall of the aperture expands whilethe protoplast and endintine are still infolded. Apparently,the exintine becomes detached from the endintine during desiccationand re-attaches at rehydration. It is suggested that the transientdetachment controls the influx of water into the vegetativecell Except for morph-specific exine processes no differences instructure of the aperture wall or its functioning at rehydrationwere observed between pin and thrum grains Pollen wallM, apertures, exintine, exine free grains, rehydration, desiccation, Linum grandiflorum  相似文献   

7.
The pollen wall of Canna generalis Bailey is exceptionally thick, but only a minor part of it contains detectable amounts of sporopollenin. The sporopollenin is in isolated spinules at the exine surface and in the intine near the plasma membrane. There is no sporopollenin in the > 10 μ thick channeled region between spinules and intine. We suggest that the entire pollen wall of C. generalis is similar to the thick intine and thin exine typical for germinal apertures in many pollen grain types. Considered functionally, the Canna pollen wall may offer an infinite number of sites for pollen tube initiation and would differ significantly from grains that are inaperturate in the sense of an exine lacking definite germinal apertures.  相似文献   

8.

Background and Aims

The tam (tardy asynchronous meiosis) mutant of Arabidopsis thaliana, which exhibits a modified cytokinesis with a switch from simultaneous to successive cytokinesis, was used to perform a direct test of the implication of cytokinesis in aperture-pattern ontogeny of angiosperm pollen grains. The aperture pattern corresponds to the number and arrangement of apertures (areas of the pollen wall permitting pollen tube germination) on the surface of the pollen grain.

Methods

A comparative analysis of meiosis and aperture distribution was performed in two mutant strains of arabidopsis: quartet and quartet-tam.

Key Results

While the number of apertures is not affected in the quartet-tam mutant, the arrangement of the three apertures is modified compared with the quartet, resulting in a different aperture pattern.

Conclusions

These results directly demonstrate the relationship between the type of sporocytic cytokinesis and pollen aperture-pattern ontogeny.  相似文献   

9.
Svetlana Polevova 《Grana》2013,52(5):337-349
Pollen ontogeny and sporoderm development in Aristolochia manshuriensis were studied for elaboration of the inaperturete pollen ontogeny in Aristolochia. Despite the formation of apertures in the tetrad period, the sporoderm in A. manshuriensis becomes inaperturate at the end of the free microspore period. A similar immature exine is also detected in A. macrophylla. Variants of aperture formation in the tetrad period in A. manshuriensis or formation of a polar aperture in the free microspore period in A. clematitis are associated with types of microsporogenesis. The ectexine and endexine in A. manshuriensis are formed over a longer time and reached much greater thickness than those in A. clematitis. The endexine and intine in A. manshuriensis do not reach a mature state, similar to A. clematitis. The exine of A. manshuriensis cracks, releasing a pollen tube enveloped by the intine. This fact does not hinder the functioning of the male gametophyte of A. manshuriensis.  相似文献   

10.
Fossil angiospermous stamens with in situ pollen from the Turonian (ca. 90 million years before present, Late Cretaceous) of New Jersey are described and assigned to the Chloranthaceae. The fossil stamens, which are three-parted and bear two bisporangiate thecae on the central lobe and one bisporangiate theca on each lateral lobe, are indistinguishable from stamens of several extant species of Chloranthus. The pollen is spheroidal, 13–18 μm in diameter, with a reticulate exine and apparently elongate/elliptical apertures. The pollen is similar to that in extant Chloranthus in grain size, shape, exine sculpture, and aperture structure. Like pollen of some extant species of Chloranthus, aperture number in the fossil pollen appears to be variable. Because fossil pistillate chloranthoid reproductive structures have not been found at this locality it is unknown whether the fossil stamens described here were borne on the side of the ovary, as in extant Chloranthus, or in another arrangement. The three-parted stamen of Chloranthus is unique in angiosperms and there has been considerable debate concerning the origin and evolutionary significance of the structure. Uncertainty as to whether the three-parted stamen represents a synapomorphy for the genus or a retained plesiomorphy in angiosperms is the primary reason why these fossil stamens are not assigned to the extant genus Chloranthus.  相似文献   

11.
Pollen morphology and sporoderm ultrastructure of modern Neurada procumbens L. and Grielum humifusum E.Mey. ex Harv. et Sond. were studied using light (LM) and electron (SEM and TEM) microscopy. Additionally late Holocene pollen of the Grielum-type was studied using LM. Systematic and ecological aspects have been discussed for the family Neuradaceae. The pollen grains of the studied species are characterized by similarities in size, shape, aperture type and differences in exine sculpture (reticulate semitectate exine in Neurada and finely reticulate to foveolate in Grielum) and sporoderm ultrastructure. The cavea in the exine is situated between the ectexine and endexine which are connected near the aperture region only. A combination of the palynological characters of the Neuradaceae (semitectate exine, rather loose columellae, interrupted foot layer, the cavea in the exine) increases the pollen plasticity, allowing considerable changes of the pollen grain volume but still remains insufficient to survive sharp fluctuations in hydration level.  相似文献   

12.
Pollen grain polarity, aperture condition and pollen tube formation were examined inEphedra americana, E. foliata, E. rupestris, E. distachya, andE. fragilis using LM, SEM and TEM. In the characteristic oblate pollen, as seen in situ in the tetrad configuration, the polar axis is the minor one and the equatorial plane runs between the two narrow ends of the microspore. The intine is thick in fresh fixed mature pollen but we have seen no indication of regions having an exceptionally thick intine that could be considered associated with an aperture or apertures. About three minutes after transferring fresh pollen to the germinating medium the ridged exine splits and twists away from the intine and its enclosed protoplast. The shed exine spreads out and curls into a scroll-like configuration that is as distinctive as that of the pollen shape had been but now having the ridges and valleys perpendicular to the long axis. The pollen tube develops, in our experience with more than a hundred germinating pollen grains, near one of the narrow tips of the pollen grain's equatorial plane. The location of the pollen tube initiation probably is related to the position of the tube cell nucleus. The pollen tube starts to grow about one hour after the exine was shed. The pollen tube emerges close to the narrow end (equator) of the gametophyte. This end emerged first as the exine is shed and is opposite to the prothallial cells. The stout pollen tube is c. 10µm in diameter grown in vitro on agar. In our germination medium the stout tube continued to elongate for about 24 hours reaching a length of c. 100 µm. With respect to exine morphology the aperture condition could be considered as inaperturate. The pollen tube, however, is formed in a germination area near one end of the exineless gametophyte.  相似文献   

13.
Summary The emission of proteins from the pollen wall of Linum grandiflorum stained with Coomassie blue was followed directly in moistened grains as well as in pollen prints. Within the first minute of the grain being moistened exine-borne proteins emerged from both inter-apertural and apertural sites; subsequently, proteins of a different nature were discharged from the apertures only. In a fraction of the grains the release of intine proteins was not preceded by that of exine proteins. Pin and thrum pollen did not differ in terms of mode or site of this protein emission. The presence and emergence of exine proteins from the apertures is explained by the process of infolding of the colpal wall at desiccation and its expansion at rehydration, which causes an initial trapping and subsequent re-exposure of surface materials. This explanation may also account for the occurrence of poral sporophytic proteins in the pollens of many dictoyledons.  相似文献   

14.
Studies of pollen wall development produce a great deal of morphological data that supplies useful information regarding taxonomy and systematics. We present the exine development of Euptelea and Pteridophyllum, two taxa whose pollen wall development has never previously been studied using transmission electron microscopy. Both genera are representatives of the two earliest-diverging families of the order Ranunculales and their pollen data are important for the diagnosis of the ancestral pollen features in eudicots. Our observations show these genera are defined by having microechinate microreticulate exine ornamentation, perforate tectum, columellate morphology of the infratectum and the existence of a foot layer and endexine. The presence of lamellations is detected during the early stages of development in the nexine of both genera, especially in the apertures. Euptelea presents remains of the primexine layer during the whole maturation process, a very thin foot layer, and a laminate exinous oncus in the apertural region formed by ectexine and endexine elements. Pteridophyllum has a thicker tectum than Euptelea, a continuous foot layer and a thicker endexine. In the apertures, the exinous oncus is formed by islets and granules of endexine, in contrast to the Euptelea apertures. The secretory tapetum produces orbicules in both genera, but they have different morphology and electron-density. Comparisons with pollen data from related orders and families confirm the ancestral states for the pollen of eudicots proposed in previous studies: reticulate and echinate surfaces, columellate infractectum and a thin foot layer relative to the thickness of the ectexine. According to our observations, we propose considering the possibility of a polymorphic state for the aperture number in the ancestor of Ranunculales, and suggest the development of orbicules as the ancestral state in this order.  相似文献   

15.
The Fabales clade comprises four families: Leguminosae, Polygalaceae, Quillajaceae and Surianaceae. This study presents new information on the pollen morphology of Quillaja, the only genus of Quillajaceae, and Recchia, Guilfoylia, Cadellia, Suriana and Stylobasium, the five genera that comprise Surianaceae. The pollen of 9 of the 11 species currently recognised within the two families was examined using light microscopy (LM), scanning electron microscopy (SEM) and, selectively, with transmission electron microscopy (TEM). Pollen of all taxa is isopolar with tri-zonocolporate apertures, lalongate endoapertures with fastigia adjacent to the endoaperture, and long ectoapertures that are nearly equal to the polar length. Apocolpia are correspondingly small. Quillaja pollen is subprolate to prolate, and striate with a granular aperture surface membrane. Ectexine protrudes over the endoapertures. In thin section the foot layer is thicker in mesocolpial areas and thin to discontinuous around the apertures, where the endexine is thicker. Cadellia pollen is prolate spheroidal, and striate with a granular aperture surface membrane. Exine protrudes over the endoapertures. In thin section the endexine is thicker and lamellate around the endoaperture area, and the foot layer is thicker in mesocolpial regions. Guilfoylia pollen is oblate and gemmate-verrucate, with a granular aperture surface membrane. Columellae are short. Recchia pollen is suboblate to oblate spheroidal, and microreticulate-perforate with a granular aperture surface membrane. Exine protrudes over the endoapertures. The foot layer is thin to discontinuous around aperture margins and thick in mesocolpial regions. Stylobasium pollen is suboblate, and finely rugulate-perforate with a granular aperture surface membrane. Columellae are short, the foot layer is thin or absent. Suriana pollen is suboblate, and finely rugulate-perforate with a granular aperture surface membrane. Pollen of Cadellia and Recchia, and Stylobasium and Suriana are morphologically similar. Verrucate surface ornamentation is only present in Guilfoylia. Quillaja, Cadellia and Recchia share the character of protruding exine over the endoaperture area. Striate ornamentation occurs in Quillaja and Cadellia. The pollen morphology of Quillajaceae has more in common with that of Leguminosae and Surianaceae, and with Cadellia in particular, than with Polygalaceae.  相似文献   

16.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

17.
张敏  骆凯歌  李红  张雷  王莉 《植物研究》2014,34(2):194-199
利用傅里叶变换红外光谱仪对银杏、日本冷杉等5种裸子植物的花粉外壁成分进行测定分析,结果表明,这5种裸子植物花粉外壁的红外光谱主要由蛋白质、脂类及多糖类物质的特征吸收峰组成。但不同科属间的花粉外壁主要成分含量存在较大差异,其中银杏科的银杏花粉外壁以蛋白质含量最为丰富;松科的雪松花粉外壁以脂类物质较为丰富;杉科的日本冷杉、杉木和日本柳杉花粉外壁成分以多糖类物质为主,但种间花粉外壁成分仍存在差异。采用扫描电镜观察5种裸子植物花粉,显示银杏、柳杉和杉木花粉粒体积较小,不具气囊,银杏花粉粒外壁表面具较均一条纹状纹饰,日本柳杉和杉木花粉粒外壁具颗粒状突起。雪松和日本冷杉花粉粒具气囊,体积较大,花粉外壁分别是粗糙具小穴状纹理以及表面光滑具微穿孔。  相似文献   

18.
Brachypodium distachyon is a widely recognized model plant belonging to subfamily Pooideae with a sequenced genome. To gain a better understanding of the male reproductive development in B. distachyon we examined pollen morphology and cytochemical changes of microspore cytoplasm from pollen mother cell stage to mature pollen using light, fluorescent and scanning electron microscopy. Our results show that B. distachyon exhibits a typical monocot-type pollen ontogeny. Meiosis in the pollen mother cells is accomplished by successive cytokinesis generating isobilateral tetrads. Cytochemical examination indicated that microspore cytoplasm contains variable amounts of insoluble carbohydrates and proteins at different developmental stages. Deposition of starch in the cytoplasm of microspores starts at the bicellular stage and continues till the mature pollen stage. The formation of the exine wall progresses by the deposition of sporopollenin from the tapetum layer of the anther. The mature pollen is trinucleate, spheroidal in shape and possesses a single pore with an annulus and operculum. The exine pattern is smooth and of granular type.  相似文献   

19.
The pollen grains of 69 specimens representing 44 species or supposed species of the genus Waltheria L. have been studied. Based mainly on differences in exine characters 2 pollen types, a spinulose and a suprareticulate one were pointed out. Both types show ± parallel trends in the development of the aperture system to an increase of aperture number, to a shortening of the colpi and to more distinct bounds and nexine thickenings of the ora. They exemplify important steps of aperture evolution, which in the spinulose type leads from zonocolporate by way of zonopororate to pantopororate and in the suprareticulate type from zonocolporate to pantocolporate grains. The tendencies of sporoderm evolution concern a more distinct morphological and partially also a regional differentiation of the exine elements (bacula, spinulae), which prove to be close correlated with the evolution levels of the apertures. According to the pollen morphological point of view the species of the genus Waltheria are to be arranged in two groups, which may be regarded as two related, but relative independent phyletic entities. These evidences speak in favour of a taxonomic  相似文献   

20.
Exine, the sporopollenin-based outer layer of the pollen wall, forms through an unusual mechanism involving interactions between two anther cell types: developing pollen and tapetum. How sporopollenin precursors and other components required for exine formation are delivered from tapetum to pollen and assemble on the pollen surface is still largely unclear. Here, we characterized an Arabidopsis (Arabidopsis thaliana) mutant, thin exine2 (tex2), which develops pollen with abnormally thin exine. The TEX2 gene (also known as REPRESSOR OF CYTOKININ DEFICIENCY1 (ROCK1)) encodes a putative nucleotide–sugar transporter localized to the endoplasmic reticulum. Tapetal expression of TEX2 is sufficient for proper exine development. Loss of TEX2 leads to the formation of abnormal primexine, lack of primary exine elements, and subsequent failure of sporopollenin to correctly assemble into exine structures. Using immunohistochemistry, we investigated the carbohydrate composition of the tex2 primexine and found it accumulates increased amounts of arabinogalactans. Tapetum in tex2 accumulates prominent metabolic inclusions which depend on the sporopollenin polyketide biosynthesis and transport and likely correspond to a sporopollenin-like material. Even though such inclusions have not been previously reported, we show mutations in one of the known sporopollenin biosynthesis genes, LAP5/PKSB, but not in its paralog LAP6/PKSA, also lead to accumulation of similar inclusions, suggesting separate roles for the two paralogs. Finally, we show tex2 tapetal inclusions, as well as synthetic lethality in the double mutants of TEX2 and other exine genes, could be used as reporters when investigating genetic relationships between genes involved in exine formation.

Genetic, microscopy, and immunohistochemistry analyses place the Arabidopsis THIN EXINE2 protein at the intersection of several processes involved in the formation of pollen exine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号