首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acute gastric mucosal lesions (AGMLs) are an important cause of gastrointestinal bleeding. Herein, we demonstrate that peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of a nuclear receptor family, functions as an endogenous anti-inflammatory pathway in a murine model of AGML induced by ischemia-reperfusion (I/R). Treatment with specific PPARgamma ligands such as BRL-49653, pioglitazone, or troglitazone was examined in a model of AGML induced by I/R. PPARgamma-deficient and wild-type mice were also examined for their response to I/R in stomach. Specific PPARgamma ligands exhibited dramatic and rapid protection against AGML formation associated with I/R in mice in a dose-dependent manner. In contrast, the AGML induced by I/R in PPARgamma-deficient mice was more severe than that observed in wild-type mice. Administration of the PPARgamma ligand significantly inhibited the upregulation of TNF-alpha, ICAM-1, inducible nitric oxide synthase, apoptosis, and nitrotyrosine formation induced by I/R in the stomach. These data indicate that an endogenous pathway associated with PPARgamma plays an important role in the pathogenesis of I/R-associated injury in the stomach.  相似文献   

3.
Pituitary adenylate cyclase-activating polypeptide (PACAP), existing in two variants, PACAP-27 and PACAP-38, is found in the enteric nervous system and regulates function of the digestive system. However, the regulatory mechanism of PACAP on gastric acid secretion has not been well elucidated. We investigated the inhibitory action of PACAP-27 on acid secretion and its mechanism in isolated vascularly perfused rat stomach. PACAP-27 in four graded doses (5, 10, 20, and 50 microg/h) was vascularly infused to determine its effect on basal and pentagastrin (50 ng/h)-stimulated acid secretion. To study the inhibitory mechanism of PACAP-27 on acid secretion, a rabbit antisecretin serum, antisomatostatin serum, or indomethacin was administered. Concentrations of secretin, somatostatin, PGE(2), and histamine in portal venous effluent were measured by RIA. PACAP-27 dose-dependently inhibited both basal and pentagastrin-stimulated acid secretion. PACAP-27 at 10 microg/h significantly increased concentrations of secretin, somatostatin, and PGE(2) in basal or pentagastrin-stimulated state. The inhibitory effect of PACAP-27 on pentagastrin-stimulated acid secretion was reversed 33% by an antisecretin serum, 80.0% by an antisomatostatin serum, and 46.1% by indomethacin. The antisecretin serum partially reduced PACAP-27-induced local release of somatostatin and PGE(2). PACAP-27 at 10 microg/h elevated histamine level in portal venous effluent, which was further increased by antisomatostatin serum. However, antisomatostatin serum did not significantly increase acid secretion. It is concluded that PACAP-27 inhibits both basal and pentagastrin-stimulated gastric acid secretion. The effect of PACAP-27 is mediated by local release of secretin, somatostatin, and PGE(2) in isolated perfused rat stomach. The increase in somatostatin and PGE(2) levels in portal venous effluent is, in part, attributable to local action of the endogenous secretin.  相似文献   

4.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

5.
The purpose of this present study was to develop a method for stimulation of acid secretion by the isolated perfused rat stomach. Rat stomachs were perfused insitu via the abdominal aorta and celiac axis with Krebs-Ringer bicarbonate buffer in the presence or absence of 10% ovine erythrocytes. The gastric lumen was perfused with distilled water and gastric contents were collected at frequent intervals through a catheter at the pylorus. Sixty minute gastric acid output in response to various concentrations of pentagastrin was determined by titration of gastric contents with 0.01 N NaOH to pH 7.0. During arterial perfusion with Krebs-Ringer bicarbonate buffer in the absence of ovine erythrocytes gastric acid output was 2.50±0.58 SEM μEq H+/h, which did not increase in response to perfusion with Krebs-Ringer bicarbonate buffer containing pentagastrin. However, inclusion of 10% ovine erythrocytes in the arterial perfusate resulted in substantial stimulation of gastric acid by pentagastrin: maximal acid output, achieved with a pentagastrin dose of 0.6 μg/kg/h, was 23.5±3.73 μEq H+/h (p<0.01). The results of the present study demonstrate the capacity of the isolated vascularly perfused rat stomach to secrete acid and provide a model for studying interactions of gastrointestinal regulatory peptides and their physiologic roles in the regulation of gastric acid secretion.  相似文献   

6.
Cysteamine-induced duodenal ulceration in rats is accompanied by increased circulating gastrin. Although cysteamine appears to exert a direct action on the gastrin cell some groups have provided evidence for an involvement of the autonomic nervous system. The current experiments were performed to determine whether beta-adrenergic or cholinergic (muscarinic) pathways are involved in the acute effect of cysteamine on gastrin secretion in the isolated perfused rat stomach. Cysteamine (1 mM) increased gastrin (IRG) secretion to a maximum ranging between 100% and 192% above basal. A cysteamine concentration of 5mM resulted in peak levels ranging between 150% and 1050% above basal. Addition of atropine or propranalol did not influence the responses obtained. The present results, therefore, do not support a role for either cholinergic or beta-adrenergic pathways in cysteamine-induced gastrin release at the level of the stomach and suggest that in vivo such autonomic effects are mediated extrinsically.  相似文献   

7.
PAF has been implicated in the pathogenesis of acute gastric injury. When given peripherally, PAF induces severe gastric mucosal damage. PAF metabolizing enzymes are present in the brain but the central effects of PAF on the stomach are unknown. We have investigated in the rat the gastric secretion and gross mucosal integrity in response to intracerebroventricular (icv) PAF and compared it with that to icv TRH, a known central gastric secretagogue. Gastric acid output was markedly increased by TRH (171.6 +/- 26.3 mumol/h mean +/- SE) and by 20 micrograms/kg/h iv pentagastrin (107.6 +/- 23.6) when compared to controls receiving icv vehicle (20.2 +/- 7.5; p less than 0.01 for both). In contrast, acid output decreased after icv PAF (13.5 +/- 7.5). Furthermore, icv PAF markedly inhibited acid output stimulated by iv pentagastrin (45.1 +/- 7.03; p less than 0.05). Morphological studies showed acute gastric mucosal erosions after icv TRH and no damage was observed after icv PAF or vehicle. Thus, icv PAF reduces pentagastrin stimulated acid output and does not alter gastric mucosal integrity, whereas icv TRH stimulates acid secretion and induces gastric injury. The opposite effects of PAF and TRH suggests the existence of a gastric modulatory system at the central level.  相似文献   

8.
Microcirculatory disturbances are important early pathophysiological events in various organs during acute pancreatitis (AP). The aim of the study was to investigate an influence of L-arginine (nitric oxide substrate) and N(G)-nitro-L-arginine (L-NNA, nitric oxide synthase inhibitor) on organ microcirculation in experimental acute pancreatitis induced by four consecutive intraperitoneal cerulein injections (15 microg/kg/h). The microcirculation of pancreas, liver, kidney, stomach, colon and skeletal muscle was measured by laser Doppler flowmeter. Serum interleukin 6 and hematocrit levels were analyzed. AP resulted in a significant drop of microperfusion in all examined organ. L-arginine administration (2 x 100 mg/kg) improved the microcirculation in the pancreas, liver, kidney, colon and skeletal muscle, and lowered hematocrit levels. L-NNA treatment (2 x 25 mg/kg) caused aggravation of edematous AP to the necrotizing situation, and increased IL-6 and hematocrit levels. A further reduction of blood perfusion was noted in the stomach only. It is concluded that L-arginine administration has a positive influence on organ microcirculatory disturbances accompanying experimental cerulein-induced AP. NO inhibition aggravates the course of pancreatitis.  相似文献   

9.
Cell death and inflammation are key pathologic responses of acute pancreatitis (AP), the leading cause of hospital admissions for gastrointestinal disorders. It is becoming increasingly clear that damage-associated molecular pattern molecules (DAMPs) play an important role in the pathogenesis of AP by linking local tissue damage to systemic inflammation syndrome. Endogenous DAMPs released from dead, dying or injured cells initiate and extend sterile inflammation via specific pattern recognition receptors. Inhibition of the release and activity of DAMPs (for example, high mobility group box 1, DNA, histones and adenosine triphosphate) provides significant protection against experimental AP. Moreover, increased serum levels of DAMPs in patients with AP correlate with disease severity. These findings provide novel insight into the mechanism, diagnosis and management of AP. DAMPs might be an attractive therapeutic target in AP.  相似文献   

10.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

11.
Large-dose or long-term use of aspirin tends to cause gastric mucosa injury, which is recognized as the major side effect of aspirin. It has been demonstrated that glutamate exerts a protective effect on stomach, and the level of glutamate is critically controlled by cystine/glutamate transporter (Xc). In the present study, we investigated the role of glutamate–cystine/glutamate transporter system in aspirin-induced acute gastric mucosa injury in vitro and in vivo. Results showed that in human gastric epithelial cells, aspirin incubation increased the activity of LDH and the number of apoptotic cells, meanwhile down-regulated the mRNA expression of Xc accompanied with decreased glutamate release. Similar results were seen in a rat model. In addition, exogenous l-glutamate attenuated the gastric mucosa injury and cell damage induced by aspirin both in vitro and in vivo. Taken together, our results demonstrated that acute gastric mucosa injury induced by aspirin is related to reduction of glutamate–cystine/glutamate transporter system activity.  相似文献   

12.
Previous studies have shown that pituitary adenylate cyclase-activating peptide (PACAP) stimulates enterochromaffin-like (ECL) cell histamine release, but its role in the regulation of gastric acid secretion is disputed. This work examines the effect of PACAP-38 on aminopyrine uptake in enriched rat parietal cells and on histamine release and acid secretion in the isolated vascularly perfused rat stomach and the role of PACAP in vagally (2-deoxyglucose) stimulated acid secretion in the awake rat. PACAP has no direct effect on the isolated parietal cell as assessed by aminopyrine uptake. PACAP induces a concentration-dependent histamine release and acid secretion in the isolated stomach, and its effect on histamine release is additive to gastrin. The histamine H2 antagonist ranitidine potently inhibits PACAP-stimulated acid secretion without affecting histamine release. Vagally stimulated acid secretion is partially inhibited by a PACAP antagonist. The results from the present study strongly suggest that PACAP plays an important role in the neurohumoral regulation of gastric acid secretion. Its effect seems to be mediated by the release of ECL cell histamine.  相似文献   

13.
Proton pump inhibitors (PPIs) could inhibit the secretion of gastric acid. Meanwhile, it could also decrease the secretion of other digestive glands besides gastric parietal cell. As we know, PPIs have been widely used to treat acute pancreatitis, and it is effective in clinical practice. However, research showed the side effect of PPIs on acute pancreatitis. The direct effect of PPI on pancreatic secretion is still unknown. Our experiment investigated the direct effect of PPIs on pancreatic exocrine by isolated pancreatic acini. In our study, isolated pancreatic acini were prepared as previously described by Williams, and cerulein was added to stimulate its secretion. The amylase release in the suspension was determined after the administration of different concentrations of omeprazole and Sandostatin; and its activity was also observed in different time phases. In our in vitro study, all results suggest that omeprazole has no direct repression on amylase release from isolated pancreatic acini.  相似文献   

14.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

15.
In isolated rat pancreatic acini, protein expression of RhoA and Rho-associated kinase, ROCK-II, and the formation of immunocomplex of RhoA with ROCK-II were enhanced by CCK-8, carbachol, and the phorbol ester TPA. The ROCK-specific inhibitor, Y-27632, did not alter basal amylase secretion, whereas it potentiated CCK-stimulated pancreatic enzyme secretion in vitro. During caerulein-induced pancreatitis occurring in mice in vivo, Y-27632 enhanced serum amylase levels and the formation of interstitial edema and vacuolization at 12-18h after the first injection of caerulein. Y-27632 in turn inhibited the recovery of protein expression of ROCK-II at 18h after the first caerulein injection. These results suggest that RhoA and ROCK-II assemble normal CCK-stimulated pancreatic enzyme secretion and prevent caerulein-induced acute pancreatitis.  相似文献   

16.
The mechanism of N-methyl-D-aspartate (NMDA) inhibits oxotremorine-induced acid secretion was examined in rat stomach, in relation to the cyclic GMP system. NMDA (10(-7) M) did not affect the spontaneous acid secretion from the everted preparations of isolated rat stomach, but inhibited the acid secretion stimulated by oxotremorine, and this effect of NMDA was antagonized by 2-amino-5-phosphonovaleric acid (AP-5), (+/-)3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or N(G)-nitro-L-arginine (L-NNA). NMDA also elevated the cyclic GMP content of mucosal slices from rat stomach, and this effect of NMDA was antagonized by L-NNA. These results indicate that NMDA receptors are present in the rat stomach and regulate the gastric acid secretion. The mechanism underlying the effect of NMDA inhibits oxotremorine-induced acid secretion may be mediated by the NO-dependent cyclic GMP system.  相似文献   

17.
用血管灌流大鼠离体胃制备,研究五肽胃泌素(G5)和八肽胆囊收缩素(CCK8)对胃窦收缩运动的影响。结果表明:(1)血管灌流G5和CCK8都能显著兴奋胃窦收缩运动,并有量效关系;(2)抗胃泌素血清(1:100)可完全取消G5对胃窦收缩运动的兴奋作用;(3)CCK受体阻断剂双丁酰环磷鸟苷和抗CCK8血清(1:100)都能完全取消CCK8对胃窦收缩运动的兴奋作用;(4)M受体阻断剂阿托品能完全阻断G5对胃窦收缩运动的兴奋作用,部分阻断CCK8对胃窦收缩运动的兴奋作用。上述结果提示:(1)G5可特异性兴奋血管灌流大鼠胃窦收缩运动,该作用通过壁内胆碱能神经系统介导;(2)CCK8对血管灌流大鼠胃窦收缩运动亦有特异性兴奋作用,该作用只是部分与壁内胆碱能神经系统有关。  相似文献   

18.
Determination of the secretory activity of the stomach and ultrasound scanning of human gastroduodenal organs and vessels in experiments with −12° and −15° head-down tilting (HDT) hypokinesia were performed. As a result of short-term (12–24 h) HDT hypokinesia with the minimized hypokinesia factor, parenchymatous organs enlarged, and the walls of hollow organs thickened. Enhanced blood filling of abdominal veins was accompanied by elevated pepsinogen levels in blood and urine and increased gastric contents in fasting subjects. The increased tonicity of the pylorus and the delayed evacuation of stomach contents indicated the activation of hydrochloric acid secretion. Simultaneously, the bile and pancreatic juice were secreted more profusely, and the intestinal contents in the duodenum increased. It has been shown that the modeled enhancement of blood filling of abdominal veins stimulates gastric secretion on an empty stomach, which is accompanied by activation of secretion in the liver and pancreas.  相似文献   

19.
Some individuals develop prediabetes and/or diabetes following acute pancreatitis (AP). AP-induced beta-cell injury and the limited regenerative capacity of beta cells might account for pancreatic endocrine insufficiency. Previously, we found that only a few pancreatic cytokeratin 5 positive (Krt5+) cells differentiated into beta cells in the murine AP model, which was insufficient to maintain glucose homeostasis. Notch signaling determines pancreatic progenitor differentiation in pancreas development. This study aimed to examine whether Notch signaling inhibition could promote pancreatic Krt5+ cell differentiation into beta cells and improve glucose homeostasis following AP. Pancreatic tissues from patients with acute necrotizing pancreatitis (ANP) were used to evaluate beta-cell injury, Krt5+ cell activation and differentiation, and Notch activity. The murine AP model was induced by cerulein, and the effect of Notch inhibition on Krt5+ cell differentiation was evaluated both in vivo and in vitro. The results demonstrated beta-cell loss in ANP patients and AP mice. Krt5+ cells were activated in ANP pancreases along with persistently elevated Notch activity, which resulted in the formation of massive duct-like structures. AP mice that received Notch inhibitor showed that impaired glucose tolerance was reversed 7 and 15 days following AP, and increased numbers of newborn small islets due to increased differentiation of Krt5+ cells to beta cells to some extent. In addition, Krt5+ cells isolated from AP mice showed increased differentiation to beta cells by Notch inhibition. Collectively, these findings suggest that beta-cell loss contributes to pancreatic endocrine insufficiency following AP, and inhibition of Notch activity promotes pancreatic Krt5+ cell differentiation to beta cells and improves glucose homeostasis. The findings from this study may shed light on the potential treatment of prediabetes/diabetes following AP.Subject terms: Endocrine system and metabolic diseases, Pancreatitis  相似文献   

20.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号