首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Indirect immunofluorescence staining with human anti-kinetochore antibodies was used to study the position of centromeres during vertebrate spermiogenesis. Many species of Amphibia have a low chromosome number and very large spermatids and spermatozoa. The number of kinetochore dots correlates exactly with the haploid chromosome number. This implies that kinetochore duplication occurs in the interval between meiosis I and meiosis II. The nonhomologous centromeres are arranged in tandem during the entire course of spermiogenesis and in mature spermatozoa. A higher order centromere arrangement was found in spermiogenic cells of Anura and Urodela. In mammals, immunofluorescence analysis is complicated by the extreme condensation of chromatin during spermiogenesis and the high chromosome numbers. Nevertheless, centromere-centromere associations were observed in mammalian round spermatids and sporadically in testicular spermatozoa. This indicates that pair-wise association of centromeres is a universal principle of centromere arrangement at the postmeiotic stage.  相似文献   

3.
The non-random positioning of chromosome territories (CTs) in lymphocyte cell nuclei has raised the question whether systematic chromosome-chromosome associations exist which have significant influence on interchange rates. In such a case the spatial proximity of certain CTs or even of clusters of CTs is expected to increase the respective exchange yields significantly, in comparison to a random association of CTs. In the present study we applied computer simulated arrangements of CTs to calculate interchange frequencies between all heterologous CT pairs, assuming a uniform action of the molecular repair machinery. For the positioning of CTs in the virtual nuclear volume we assumed a) a statistical, and b) a gene density-correlated arrangement. The gene density-correlated arrangement regards the more experimentally observed interior localization of gene-rich and the more peripheral positioning of gene-poor CTs. Regarding one-chromosome yields, remarkable differences for single CTs were observed taking into account the gene density-correlated distribution of CTs.  相似文献   

4.
Chromosome arrangements in human fibroblasts at mitosis   总被引:1,自引:1,他引:0  
Summary The positions of the centromeres of all 46 human chromosomes were analysed in three dimensional reconstructions of electron micrographs of 10 serially sectioned unpretreated human male fibroblast cells. The reconstructions show that the spatial positioning of the chromosomes during division is not random. The centromeres were arranged on a metaphase plate that was ellipsoidal and that tended to be flat. The distance of centromeres from the centre of the mitotic figure was correlated with chromosome size; small chromosomes tended to be central in all the metaphases. Large chromosomes were more peripheral, especially in cells that were more advanced in mitosis. Thus, there is a tendency for larger chromosomes to move outwards as metaphase advances. In many cells, the A group centromeres were overdispersed, whereas G group centromeres tended to be clustered. The acrocentric chromosomes (D and G groups) also tended to be clustered when analysed together, probably reflecting associations in nucleoli at the previous interphase. The results show that chromosome disposition is non-random and that it changes during division.  相似文献   

5.
Interphase chromosomes form distinct spatial domains called chromosome territories (CTs). The arrangement of CTs is non-random and correlated with cellular processes such as differentiation. The purpose of this study is to provide some behavior information of CTs during lymphocyte EBV-infection, which is thought to be a general extra-biological model. Three-dimensional fluorescence in situ hybridization (3D-FISH) was performed on human lymphocytes every 24 h over 96 h periods in EBV-infection. Chromosomes 17 and 18 were selected as target territories for similar size and different gene density. The data indicate that the radial position of territories 17 was altered with time, whereas territories 18 showed relative stable localization. The relative CT volume of CTs 18 to 17 also changed with infection. Our study is the first to examine the timely changes of chromatin positioning and folding in EBV-lymphocyte infection. Dynamic changes in position and folding status of target chromosomes reflected an impact of EBV infection on genome stability.  相似文献   

6.
The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2–3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation.  相似文献   

7.
The linear sequence of genomes exists within the three-dimensional space of the cell nucleus. The spatial arrangement of genes and chromosomes within the interphase nucleus is nonrandom and gives rise to specific patterns. While recent work has begun to describe some of the positioning patterns of chromosomes and gene loci, the structural constraints that are responsible for nonrandom positioning and the relevance of spatial genome organization for genome expression are unclear. Here we discuss potential functional consequences of spatial genome organization and we speculate on the possible molecular mechanisms of how genomes are organized within the space of the mammalian cell nucleus.  相似文献   

8.
Sections from archival formalin-fixed, paraffin wax-embedded human tissues are a valuable source for the study of the nuclear architecture of specific tissue types in terms of the three-dimensional spatial positioning and architecture of chromosome territories and sub-chromosomal domains. Chromosome painting, centromeric, and locus-specific probes were hybridized to tissue microarrays prepared from formalin-fixed paraffin wax-embedded samples of pancreas and breast. The cell nuclei were analyzed using quantitative three-dimensional image microscopy. The results obtained from non-neoplastic pancreatic cells of randomly selected individuals indicated that the radial arrangement of the chromosome 8 territories as well as their shape (roundness) did not significantly differ between the individuals and were in accordance with assumptions of a probabilistic model for computer simulations. There were considerable differences between pancreatic tumor and non-neoplastic cells. In non-neoplastic ductal epithelium of the breast there was a larger, but insignificant, variability in the three-dimensional positioning of the centromere 17 and HER2 domains between individuals. In neoplastic epithelial breast cells, however, the distances between centromere and gene domains were, on average, smaller than in non-neoplastic cells. In conclusion, our results demonstrate the feasibility of studying the genome architecture in archival, formalin-fixed, paraffin wax-embedded human tissues, opening new directions in tumor research and cell classification.  相似文献   

9.
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.  相似文献   

10.
11.
Nanbo A  Sugden A  Sugden B 《The EMBO journal》2007,26(19):4252-4262
Epstein-Barr virus (EBV) is an exceptionally successful human viral pathogen maintained as a licensed, plasmid replicon in proliferating cells. We have measured the distributions of EBV-derived plasmids in single live cells throughout the cell cycle in the absence of selection and confirmed the measured rates of duplication and partitioning computationally and experimentally. These analyses have uncovered a striking, non-random partitioning for this minimalist plasmid replicon and revealed additional properties of it and its host cells: (1) 84% of the plasmids duplicate during each S phase; (2) all duplicated plasmids are spatially colocalized as pairs, a positioning that is coupled to their non-random partitioning; (3) each clone of cells requires a certain threshold number of plasmids per cell for its optimal growth under selection; (4) defects in plasmid synthesis and partitioning are balanced to yield wide distributions of plasmids in clonal populations of cells for which the plasmids provide a selective advantage. These properties of its plasmid replicon underlie EBV's success as a human pathogen.  相似文献   

12.
Nematode spermatozoa are amoeboid cells. In Caernorhabditis elegans and Ascaris suum, previous studies have reported that sperm motility does not involve actin, but, instead, requires a specific cytoskeletal protein, name y major-sperm-protein (MSP). In Heligmosomoides polygyrus, a species with large and elongate spermatids and spermatozoa, cell organelles are easily identified even with light microscopy. Electrophoresis of Heligmosomoides sperm proteins indicates that the main protein band has a molecular weight of about 15 kDa, as MSP in other nematodes, and is specifically labelled by an anti-MSP antibody raised against C. elegans MSP. A minor band at 43 kDa was specifically labelled by an anti-actin antibody. Reaction of anti-actin and anti-MSP antibodies is specific to, and restricted to, their respective targets. Actin and MSP localisation, studied by indirect immunofluorescence in male germ cells of Heligmosomoides polygyrus, are similar: spermatids show rows of dots, corresponding to the fibrous bodies, around an unlabelled central longitudinal core; spermatozoa are labelled strictly in an anterior crescent-shaped cap, at the opposite pole to the nucleus, which contains fibres of the MSP cytoskeleton. Phalloidin labelling shows that F-actin is present in spermatids, but absent in spermatozoa. Tropomyosin shows a distinct pattern in spermatids, but is located in the MSP and actin-containing cap in spermatozoa. It is hypothesized that actin plays a role in the shaping of the cell and in the arrangement of its organelles during nematode spermiogenesis, when MSP is present, in an inactive state, in the fibrous bodies. The concentration of actin and tropomyosin in the anterior cap is not compatible with previous theories about the MSP cytoskeleton which is supposed to act in the absence of actin. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Buenemann M  Lenz P 《PloS one》2010,5(11):e13806
Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.  相似文献   

14.
A quantitative computer model was applied to simulate the three-dimensional (3D) spatial organization of chromatin in human cell nuclei under defined conditions of virtual irradiation to explore the implications of spatial organization on chromosome aberrations. To calibrate the virtual irradiation algorithm, a dose-dependent spectrum of radiation-induced chromosome aberrations such as dicentrics, translocations and centric rings was calculated for low-LET radiation doses ranging from 0.5 to 5 Gy. This was compared with the results from experimental studies. While the dose-response curves calculated from model simulations agree well with experimental dose-response curves for dicentrics and translocations, centric rings are significantly more frequent in the model simulation than in experiments despite taking into account exclusive arm territories in the applied Spherical 1 Mbp Chromatin Domain (SCD) computer model explicitly. Taking into account the non-random positioning of chromosome territories observed in lymphocyte cell nuclei (a so-called gene density-correlated arrangement of chromosome territories), aberration frequencies were calculated with the calibrated irradiation algorithm to investigate the impact of chromosome territory neighborhood effects (proximity effects). The absolute frequencies of pairwise exchanges agree well with those found in an experimental study. In conclusion, the results obtained using the computer model approach presented here based on only a few adjustable parameters correlated well with those of experimental studies of chromosome aberration frequencies. Thus the model may be a useful tool in radiation-induced cancer risk estimates in combination with epidemiological studies.  相似文献   

15.
The Gram negative plant pathogen Agrobacterium tumefaciens is uniquely capable of genetically transforming eukaryotic host cells during the infection process. DNA and protein substrates are transferred into plant cells via a type IV secretion system (T4SS), which forms large cell-envelope spanning complexes at multiple sites around the bacterial circumference. To gain a detailed understanding of T4SS positioning, the spatial distribution of fluorescently labeled T4SS components was quantitatively assessed to distinguish between random and structured localization processes. Through deconvolution microscopy followed by Fourier analysis and modeling, T4SS foci were found to localize in a non-random periodic pattern. These results indicate that T4SS complexes are dependent on an underlying scaffold or assembly process to obtain an organized distribution suitable for effective delivery of substrates into host cells.  相似文献   

16.
Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host’s nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.  相似文献   

17.
Analysis of human spermatozoa and lymphocytes using C-banding techniques and in situ hybridization has shown a higher order packaging of the human genome. Chromosomes are not distributed entirely at random within the nucleus. In particular, chromosomes 1, 9, and 16, carrying large blocks of pericentromeric heterochromatin, and the Y chromosome, carrying heterochromatin in Yq12, are in close proximity to each other within the nucleus and are involved in somatic pairing with nonhomologous chromosomes. In order to determine whether the close proximity of these chromosomes in any way is attributable to the distribution of heterochromatin, double in situ hybridization was performed on chromosomes 1--Y, 9--Y, and 16--Y as well as on 1--X, 9--X, and 16--X-with chromosome X as the other gonosome carrying less heterochromatin-in human spermatozoa. Each pair was found to have a nonrandom spatial distribution. However, comparison of the arrangement of chromosomes 1--Y versus 1--X and 9--Y versus 9--X revealed that heterochromatin cannot be the only cause for the tendency of chromosome fusion, because only the results of the chromosome pair 1--Y/1--X could support this proposition. In conclusion, the heterochromatin effect cannot be, in itself, an adequate explanation for chromosome association, implicating as well other mechanisms.  相似文献   

18.
19.
20.
We have investigated the origin and nature of chromosome spatial order in human cells by analyzing and comparing chromosome distribution patterns of normal cells with cells showing specific chromosome numerical anomalies known to arise early in development. Results show that all chromosomes in normal diploid cells, triploid cells and in cells exhibiting nondisjunction trisomy 21 are incorporated into a single, radial array (rosette) throughout mitosis. Analysis of cells using fluorescence in situ hybridization, digital imaging and computer-assisted image analysis suggests that chromosomes within rosettes are segregated into tandemly linked “haploid sets” containing 23 chromosomes each. In cells exhibiting nondisjunction trisomy 21, the distribution of chromosome 21 homologs in rosettes was such that two of the three homologs were closely juxtaposed, a pattern consistent with our current understanding of the mechanism of chromosomal nondisjunction. Rosettes of cells derived from triploid individuals contained chromosomes segregated into three, tandemly linked haploid sets in which chromosome spatial order was preserved, but with chromosome positional order in one haploid set inverted with respect to the other two sets. The spatial separation of homologs in triploid cells was chromosome specific, providing evidence that chromosomes occupy preferred positions within the haploid sets. Since both triploidy and nondisjunction trisomy 21 are chromosome numerical anomalies that arise extremely early in development (e.g., during meiosis or during the first few mitoses), our results support the idea that normal and abnormal chromosome distribution patterns in mitotic human cells are established early in development, and are propagated faithfully by mitosis throughout development and into adult life. Furthermore, our observations suggest that segregation of chromosome homologs into two haploid sets in normal diploid cells is a remnant of fertilization and, in normal diploid cells, reflects segregation of maternal and paternal chromosomes. Received: 19 January 1998; in revised form: 28 May 1998 / Accepted: 30 June 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号