共查询到20条相似文献,搜索用时 0 毫秒
1.
Ericka L. Anderson Jason N. Cole Joshua Olson Bryan Ryba Partho Ghosh Victor Nizet 《The Journal of biological chemistry》2014,289(6):3539-3546
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities. 相似文献
2.
EsxA (ESAT-6), an important virulence factor of Mycobacterium tuberculosis, plays an essential role in phagosome rupture and bacterial cytosolic translocation within host macrophages. Our previous study showed that EsxA exhibits a unique membrane-interacting activity that is not found in its ortholog from nonpathogenic Mycobacterium smegmatis. However, the molecular mechanism of EsxA membrane insertion remains unknown. In this study, we generated truncated EsxA proteins with deletions of the N- and/or C-terminal flexible arm. Using a fluorescence-based liposome leakage assay, we found that both the N- and C-terminal arms were required for membrane disruption. Moreover, we found that, upon acidification, EsxA converted into a more organized structure with increased α-helical content, which was evidenced by CD analysis and intrinsic tryptophan fluorescence. Finally, using an environmentally sensitive fluorescent dye, we obtained direct evidence that the central helix-turn-helix motif of EsxA inserted into the membranes and formed a membrane-spanning pore. A model of EsxA membrane insertion is proposed and discussed. 相似文献
3.
Wanyoike Kang'ethe Harris D. Bernstein 《The Journal of biological chemistry》2013,288(49):35028-35038
Autotransporters are a superfamily of virulence proteins produced by Gram-negative bacteria. They consist of an N-terminal β-helical domain (“passenger domain”) that is secreted into the extracellular space and a C-terminal β-barrel domain (“β-domain”) that anchors the protein to the outer membrane. Because the periplasm lacks ATP, vectorial folding of the passenger domain in a C-to-N-terminal direction has been proposed to drive the secretion reaction. Consistent with this hypothesis, mutations that disrupt the folding of the C terminus of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP have been shown to cause strong secretion defects. Here, we show that point mutations introduced at specific locations near the middle or N terminus of the EspP β-helix that perturb folding also impair secretion, but to a lesser degree. Surprisingly, we found that even multiple mutations that potentially abolish the stability of several consecutive rungs of the β-helix only moderately reduce secretion efficiency. Although these results provide evidence that the free energy derived from passenger domain folding contributes to secretion efficiency, they also suggest that a significant fraction of the energy required for secretion is derived from another source. 相似文献
4.
Aim: This study was conducted to find the best suited freely available software for modelling of proteins by taking a few sample
proteins. The proteins used were small to big in size with available crystal structures for the purpose of benchmarking. Key players
like Phyre2, Swiss-Model, CPHmodels-3.0, Homer, (PS)2, (PS)2-V2, Modweb were used for the comparison and model generation.
Results: Benchmarking process was done for four proteins, Icl, InhA, and KatG of Mycobacterium tuberculosis and RpoB of Thermus
Thermophilus to get the most suited software. Parameters compared during analysis gave relatively better values for Phyre2 and
Swiss-Model. Conclusion: This comparative study gave the information that Phyre2 and Swiss-Model make good models of small
and large proteins as compared to other screened software. Other software was also good but is often not very efficient in
providing full-length and properly folded structure. 相似文献
5.
RD-1(region of difference-1)被认为在结核分枝杆菌(Mycobacterium tuberculosis,MTB)的致病机理中起着关键的作用.RD-1基因全长9.5 kb,开放读码框从Rv3871~Rv3879c,分别编码9种不同的蛋白质.RD-1区在卡介苗(bacillus Calmette-Guerin,BCG)中是缺失的.研究结果显示,RD-1区是结核分枝杆菌的主要毒力因素之一,同时RD-1区参与了一种新的分泌系统ESX-1,这种分泌系统能够促进某些特定蛋白的分泌.ESX-1分泌的两种主要蛋白质CFP-10 (culture filtrate protein of 10 ku)和ESAT-6 (early secreted antigenic target of 6 ku)能够形成牢固的1∶1的复合体,这两种蛋白质能够协同分泌而且能够引起T细胞反应,并可能作为理想的靶抗原在结核的预防和诊断中发挥作用. 相似文献
6.
Monifa Fahie Fabian B. Romano Christina Chisholm Alejandro P. Heuck Mark Zbinden Min Chen 《The Journal of biological chemistry》2013,288(43):31042-31051
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells. 相似文献
7.
8.
Antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms. Here we demonstrate that the outer membrane lipoprotein, Lpp, of Enterobacteriaceae interacts with and promotes susceptibility to the bactericidal activities of AMPs. The oligomeric Lpp was specifically recognized by several cationic α-helical AMPs, including SMAP-29, CAP-18, and LL-37; AMP-mediated bactericidal activities were blocked by anti-Lpp antibody blocking. Blebbing of the outer membrane and increase in membrane permeability occurred in association with the coordinate internalization of Lpp and AMP. Interestingly, the specific binding of AMP to Lpp was resistant to divalent cations and salts, which were able to inhibit the bactericidal activities of some AMPs. Furthermore, using His-tagged Lpp as a ligand, we retrieved several characterized AMPs, including SMAP-29 and hRNase 7, from a peptide library containing crude mammalian cell lysates. Overall, this study explores a new mechanism and target of antimicrobial activity and provides a novel method for screening of antimicrobials for use against drug-resistant bacteria. 相似文献
9.
The interaction of host cells with mycobacteria is complex and can lead to multiple outcomes ranging from bacterial clearance to latent infection. Although many factors are involved, the mammalian autophagy pathway is recognized as a determinant that can influence the course of infection. Intervention aimed at utilizing autophagy to clear infection requires an examination of the autophagy and signal transduction induced by mycobacteria under native conditions. With both pathogenic and non-pathogenic mycobacteria, we show that infection correlates with an increase in the mammalian target of rapamycin (mTOR) activity indicating that autophagy induction by mycobacteria occurs in an mTOR-independent manner. Analysis of Mycobacterium smegmatis and Mycobacterium bovis bacille Calmette-Guérin (BCG), which respectively induce high and low autophagy responses, indicates that lipid material is capable of inducing both autophagy and mTOR signaling. Although mycobacterial infection potently induces mTOR activity, we confirm that bacterial viability can be reduced by rapamycin treatment. In addition, our work demonstrates that BCG can reduce autophagy responses to M. smegmatis suggesting that specific mechanisms are used by BCG to minimize host cell autophagy. We conclude that autophagy induction and mTOR signaling take place concurrently during mycobacterial infection and that host autophagy responses to any given mycobacterium stem from multiple factors, including the presence of activating macromolecules and inhibitory mechanisms. 相似文献
10.
Dyer DH Lyle KS Rayment I Fox BG 《Protein science : a publication of the Protein Society》2005,14(6):1508-1517
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed. 相似文献
11.
García J Puentes A Rodríguez L Ocampo M Curtidor H Vera R Lopez R Valbuena J Cortes J Vanegas M Barrero C Patarroyo MA Urquiza M Patarroyo ME 《Protein science : a publication of the Protein Society》2005,14(9):2236-2245
The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins. 相似文献
12.
Carola Dresen Leo Y.-C. Lin Igor D'Angelo Elitza I. Tocheva Natalie Strynadka Lindsay D. Eltis 《The Journal of biological chemistry》2010,285(29):22264-22275
Mycobacterium tuberculosis (Mtb) and Rhodococcus jostii RHA1 have similar cholesterol catabolic pathways. This pathway contributes to the pathogenicity of Mtb. The hsaAB cholesterol catabolic genes have been predicted to encode the oxygenase and reductase, respectively, of a flavin-dependent mono-oxygenase that hydroxylates 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3-HSA) to a catechol. An hsaA deletion mutant of RHA1 did not grow on cholesterol but transformed the latter to 3-HSA and related metabolites in which each of the two keto groups was reduced: 3,9-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-17-one (3,9-DHSA) and 3,17-dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9-one (3,17-DHSA). Purified 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 4-hydroxylase (HsaAB) from Mtb had higher specificity for 3-HSA than for 3,17-DHSA (apparent kcat/Km = 1000 ± 100 m−1 s−1 versus 700 ± 100 m−1 s−1). However, 3,9-DHSA was a poorer substrate than 3-hydroxybiphenyl (apparent kcat/Km = 80 ± 40 m−1 s−1). In the presence of 3-HSA the Kmapp for O2 was 100 ± 10 μm. The crystal structure of HsaA to 2.5-Å resolution revealed that the enzyme has the same fold, flavin-binding site, and catalytic residues as p-hydroxyphenyl acetate hydroxylase. However, HsaA has a much larger phenol-binding site, consistent with the enzyme''s substrate specificity. In addition, a second crystal form of HsaA revealed that a C-terminal flap (Val367–Val394) could adopt two conformations differing by a rigid body rotation of 25° around Arg366. This rotation appears to gate the likely flavin entrance to the active site. In docking studies with 3-HSA and flavin, the closed conformation provided a rationale for the enzyme''s substrate specificity. Overall, the structural and functional data establish the physiological role of HsaAB and provide a basis to further investigate an important class of monooxygenases as well as the bacterial catabolism of steroids. 相似文献
13.
The PE/PPE multigene family codes for approximately 10% of the Mycobacterium tuberculosis proteome and is encoded by 176 open reading frames. These proteins possess, and have been named after, the conserved proline-glutamate (PE) or proline-proline-glutamate (PPE) motifs at their N-terminus. Their genes have a conserved structure and repeat motifs that could be a potential source of antigenic variation in M. tuberculosis. PE/PPE genes are scattered throughout the genome and PE/PPE pairs are usually encoded in bicistronic operons although this is not universally so. This gene family has evolved by specific gene duplication events. PE/PPE proteins are either secreted or localized to the cell surface. Several are thought to be virulence factors, which participate in evasion of the host immune response. This review summarizes the current knowledge about the gene family in order to better understand its biological function. 相似文献
14.
Autophagy is a catabolic process of cellular homeostasis evolutionarily conserved in eukaryotes. To block infection of intracellular bacterial pathogens, metazoans deploy autophagy for pathogen clearance through phago-lysosome formation and specific bactericidal peptides. Although an array of research have publicized the host regulatory factors, the function of bacterial effectors are yet to be understood in detail. In this article, we focus on the autophagic response to one of the most successful intracellular bacteria Mycobacterium tuberculosis. 相似文献
15.
Sebastian Ahrens Brett Geissler Karla J. F. Satchell 《The Journal of biological chemistry》2013,288(2):1397-1408
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. For V. cholerae to colonize the intestinal epithelium, accessory toxins such as the multifunctional autoprocessing repeats-in-toxin (MARTXVc) toxin are required. MARTX toxins are composite toxins comprised of arrayed effector domains that carry out distinct functions inside the host cell. Among the three effector domains of MARTXVc is the Rho inactivation domain (RIDVc) known to cause cell rounding through inactivation of small RhoGTPases. Using alanine scanning mutagenesis in the activity subdomain of RIDVc, four residues, His-2782, Leu-2851, Asp-2854, and Cys-3022, were identified as impacting RIDVc function in depolymerization of the actin cytoskeleton and inactivation of RhoA. Tyr-2807 and Tyr-3015 were identified as important potentially for forming the active structure for substrate contact but are not involved in catalysis or post translational modifications. Finally, V. cholerae strains modified to carry a catalytically inactive RIDVc show that the rate and efficiency of MARTXVc actin cross-linking activity does not depend on a functional RIDVc, demonstrating that these domains function independently in actin depolymerization. Overall, our results indicate a His-Asp-Cys catalytic triad is essential for function of the RID effector domain family shared by MARTX toxins produced by many Gram-negative bacteria. 相似文献
16.
17.
Elengikal Abdul Azeez Rehna Sanjeev Kumar Singh Kuppamuthu Dharmalingam 《Bioinformation》2008,3(5):230-234
In this work we are proposing Homology modeled structures of Mycobacterium leprae 18kDa heat shock protein and its mutant. The more closely related structure of the small heat shock protein (sHSP) belonging to the eukaryotic species from wheat sHSP16.9 and 16.3kDa ACR1 protein from Mycobacterium tuberculosis were used as template structures. Each model contains an N-terminal domain, alpha-crystalline domain and a C-terminal tail. The models showed that a single point mutation from serine to proline at 52nd position causes structural changes. The structural changes are observed in N-terminal region and alpha-crystalline domains. Serine in 52nd position is observed in β4 strand and Proline in 52nd position is observed in loop. The number of residues contributing α helix at N-terminal region varies in both models. In 18S more number of residues is present in α helix when compared to 18P. The loop regions between β3 and β4 strands of both models vary in number of residues present in it. Number of residues contributing β4 strand in both models vary. β6 strand is absent in both models. Major functional peptide region of alpha crystalline domains of both models varies. These differences observed in secondary structures support their distinct functional roles. It also emphasizes that a point mutation can cause structural variation. 相似文献
18.
Agarwal S Agarwal S Pancholi P Pancholi V 《The Journal of biological chemistry》2011,286(48):41368-41380
Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis. 相似文献
19.
Strains of the Beijing/W genotype of Mycobacterium tuberculosis have been responsible for large outbreaks of tuberculosis around the world, sometimes involving multi-drug resistance. It
has been shown that more recently evolved Beijing sublineages are prone to cause outbreaks. Furthermore Beijing is the single
predominant cluster in Sri Lanka. The present study identifies that recently evolved sublineages of Beijing strains are present
in the study population. The majority of Beijing isolates (92.85%) were pan-susceptible. However, these findings may have
important implications for the control and prevention of tuberculosis in Sri Lanka. 相似文献
20.
A great challenge is posed to the treatment of tuberculosis due to the evolution of multidrug-resistant (MDR) and extensively drugresistant
(XDR) strains of Mycobacterium tuberculosis in recent times. The complex cell envelope of the bacterium contains unusual
structures of lipids which protects the bacterium from host enzymes and escape immune response. To overcome the drug
resistance, targeting “drug targets” which have a critical role in growth and virulence factor is a novel approach for better
tuberculosis treatment. The enzyme Phosphopantetheinyl transferase (PptT) is an attractive drug target as it is primarily involved
in post translational modification of various types-I polyketide synthases and assembly of mycobactin, which is required for lipid
virulence factors. Our in silico studies reported that the structural model of M.tuberculosis PptT characterizes the structure-function
activity. The refinement of the model was carried out with molecular dynamics simulations and was analyzed with root mean
square deviation (RMSD), and radius of gyration (Rg). This confirmed the structural behavior of PptT in dynamic system.
Molecular docking with substrate coenzyme A (CoA) identified the binding pocket and key residues His93, Asp114 and Arg169
involved in PptT-CoA binding. In conclusion, our results show that the M.tuberculosis PptT model and critical CoA binding pocket
initiate the inhibitor design of PptT towards tuberculosis treatment. 相似文献