首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superovulation and embryo transfer in Bos indicus cattle   总被引:1,自引:0,他引:1  
Compared to Bos taurus breeds, Bos indicus breeds of cattle present several differences in reproductive physiology. Follicular diameter at deviation and at the time of ovulatory capability are smaller in B. indicus breeds. Furthermore, B. indicus breeds have a greater sensitivity to gonadotropins, a shorter duration of estrus, and more often express estrus during the night. These differences must be considered when setting up embryo transfer programs for B. indicus cattle. In recent studies, we evaluated follicular dynamics and superovulatory responses in B. indicus donors with the objective of implementing fixed-time AI protocols in superstimulated donors. Protocols using estradiol and progesterone/progestrogen releasing devices to control follicular wave emergence were as efficacious as in B. taurus cattle, allowing the initiation of superstimulatory treatments (with lower dosages of FSH than in B. taurus donors) at a self-appointed time. Furthermore, results presented herein indicate that delaying the removal of progesterone/progestogen-releasing devices, combined with the administration of GnRH or pLH 12 h after the last FSH injection, results in synchronous ovulations, permitting the application of fixed-time AI of donors without the necessity of estrus detection and without compromising the results.  相似文献   

2.
Our expanding knowledge of the control of follicular wave dynamics during the bovine estrous cycle has resulted in renewed enthusiasm for the prospects of precisely controlling the follicular and luteal dynamics and finely controlling the time of ovulation. Follicular wave development can be controlled mechanically by ultrasound-guided follicle ablation or hormonally by treatments with GnRH or estradiol and progestogen/progesterone in combination. Treatment of cattle with GnRH in combination with prostaglandin F2 alpha (PGF) 7 d later and a second GnRH 48 h after PGF (known as Ovsynch) has resulted in acceptable pregnancy rates after fixed-time AI in lactating dairy cows and in recipients in which embryos were transferred without estrus detection. Alternatively, treatments with estradiol and progestogen/progesterone-releasing devices resulted in synchronous emergence of a new follicular wave and, when a second estradiol treatment was given 24 h after device removal, synchronous ovulation and high pregnancy rates to fixed-time AI. Self-appointed embryo transfer (without estrus detection) using estradiol and progesterone treatments have resulted in pregnancy rates comparable with those obtained with recipients transferred 7 d after estrus. Furthermore, estradiol and progesterone treatments combined with PGF and eCG (given 1 d after the expected time of wave emergence) have resulted in high rates of recipients selected for transfer (84.6%) and an overall pregnancy rate of 48.7% (recipients pregnant/recipients treated). Estradiol and progestogen/progesterone treatments have also been widely used for self-appointed superstimulation protocols with equivalent embryo production to that of donor cows superstimulated using the traditional approach beginning 8 to 12 d after estrus. In summary, exogenous control of luteal and follicular development facilitates the application of assisted reproductive technologies in cattle by offering the possibility of planning the superstimulation of donors and synchronization of recipients at a self-appointed time, without the necessity of estrus detection and without sacrificing results.  相似文献   

3.
The influence of the timing for the ablation of dominant follicle(s) prior to superovulatory treatment, and its effect on ovarian follicular growth and embryo yield, still remain elusive in cattle. The present study was designed to evaluate the effects of: (1) the day of the estrous cycle, at mid-diestrus, for the onset of superstimulation of follicular development, (2) the presence or absence of large ovarian follicles (ovary status) and (3) the time of follicular ablation, in hours, prior to the superovulatory treatment, on the superovulatory response in cattle. From a total of 244 superovulatory treatments and embryo collections in nulliparous and multiparous females, 76 were conducted after follicular ablation using a simplified transvaginal puncture cannula. Results from the present study indicated that the presence of large palpable follicle(s) at the onset of superstimulation of follicular development markedly reduced the superovulatory response. In addition, follicular ablation at 0 h or at 24 h prior to the onset of the superstimulation treatment significantly increased the number of total viable embryos. However, superovulatory responses were not affected by the day of the estrous cycle for the onset of follicular superstimulation and by the animal category (heifers or cows). In conclusion, the ablation of palpable follicle(s) 24 h or immediately prior to the onset of gonadotropin treatment, from days 8 to 12 of the estrous cycle (day 0, behavioral estrus), increased the total number of transferable embryos per flushing in cattle.  相似文献   

4.
A series of 3 experiments were conducted to evaluate superovulatory response following exogenously controlled follicular wave emergence in cattle. In Experiment 1 the hypothesis was tested that treatments with progestogen plus estradiol-17beta (E-17beta) would result in the emergence of a wave of ovarian follicles that are as responsive to exogenous gonadotropins as those of a spontaneous follicular wave. Beef cows and heifers either received a progestogen ear implant on Day 0 (ovulation) plus 5 mg im E-17beta on Day 1 and were superstimulated on Day 5, or did not receive implants but were superstimulated on Day 8 (expected day of emergence of the second follicular wave). The cattle received 400 mg NIH-FSH-P1 of Folltropin-V, given in a single subcutaneous injection or twice daily as intramuscular injections over 4 d. No significant differences were detected between the 2 groups in the number of corpora lutea (CL), ova/embryos collected, fertilized ova and transferable embryos. In Experiment 2 superstimulatory responses to a single subcutaneous injection of Folltropin-V were compared between heifers in which follicle wave emergence was synchronized with progestogen plus E-17beta at unknown stages of the estrous cycle with those treated following a conventional method of superstimulation at middiestrus. Superstimulation 4 d after E-17beta treatment in heifers with progestogen implants resulted in a similar superovulatory response and higher fertilization rates than those initiated 8 to 12 d after estrus. In Experiment 3 the ovarian response to a single- versus multiple-injection superstimulatory treatment protocol was compared in heifers given progestogen plus E-17beta to induce synchronous wave emergence. The number of CL, ova/embryos collected, fertilized ova and viable embryos were not different between groups. Superstimulatory treatments initiated 4 d after E-17beta treatment of cattle with progestogen implants resulted in comparable ovulatory responses to treatments initiated at the time of spontaneous wave emergence or during middiestrus. Synchronizing wave emergence in a group of randomly cycling cattle obviated the need of estrus detection and synchronization prior to superstimulation.  相似文献   

5.
Nonlactating Holstein and Jersey cows (n = 24) were superovulated and ovarian follicular development was monitored by transrectal ultrasound during the period after embryo recovery. Luteolysis was induced by two injections of prostaglandin F(2)alpha (PGF; 25 mg Lutalyse; 12-h interval) at specific times after superovulatory induced estrus (Treatment 1, Day 9; Treatment 2, Day 12; Treatment 3, Day 17; Treatment 4, Day 25; superovulatory estrus = Day 0 of Cycle 1). Follicular development was monitored during Cycle 1 before and after PGF injection and continued through the ensuing estrous cycle (Cycle 2). Superovulation led to more than one embryo collected in 14 cows (mean = 8.71 embryos: positive superovulatory response [PSR] cows), while 10 cows were not successfully superovulated (mean = 0.1 embryo; negative superovulatory response [NSR] cows). These cows differed in terms of number of unovulated follicles detected at embryo collection (4.21 vs 17.2, PSR vs NSR) and plasma progesterone during the superovulatory estrous cycle (32.3 ng/ml PSR vs 8.6 ng/ml NSR). Follicular development during Cycle 1 started sooner in NSR than in PSR cows (day by class by response P<0.03) and was initiated on Days 11 to 12 in NSR cows and on Days 19 to 20 in PSR cows. Interval to estrus after PGF averaged 6.3 d. Cows having short intervals to estrus had follicles at the time of PGF injection. Treatment influenced the length of Cycle 1, but it did not affect the interval to estrus after PGF, the length of Cycle 2, or follicular development during Cycle 2. The results indicate that 1) the timing of PGF injection after embryo collection does not influence subsequent follicular populations, 2) elongated estrous cycles and intervals to estrus after PGF in superovulated cattle are a function of decreased follicular activity, and 3) the presence of numerous corpora lutea and not the superovulatory treatment, per se, seem to attenuate follicular growth.  相似文献   

6.
The development of treatments that control follicular wave dynamics during the bovine estrous cycle has resulted in interesting possibilities for the precise control of follicular wave emergence and the time of ovulation. For superstimulation, follicular wave emergence can be controlled by ultrasound-guided follicle ablation with FSH treatments initiated 1 or 2 d later, or injection of estradiol combined with progesterone at the time of insertion of a progestogen releasing device and FSH treatments beginning 4 d later. These are the most widely used protocols for superstimulation of donor cows because they offer the convenience of being able to initiate treatments quickly and at a self-appointed time, without reducing the number of transferable embryos. However, these protocols still require precise estrus detection of donors following superstimulation in order to conduct AI at the most appropriate time. Recent studies have been designed to develop superstimulation protocols that involve fixed-time AI of donors, without regard to estrus detection. Results presented herein indicate that delaying the removal of a progestogen releasing device, combined with the administration of GnRH or porcine LH (pLH) 12 or 24 h later results in predictable, synchronous ovulations, permitting fixed-time AI without reducing the numbers or quality of embryos. These protocols facilitate the application of on-farm embryo transfer programs because they are practical, easy to administer by farm personnel, and more importantly, they eliminate the need for detecting estrus.  相似文献   

7.
Dairy (Bos taurus) heifers and cows (n = 40) in a tropical environment were treated during mid-luteal phase using either SUPER-OV(R) or OVAGEN to induce superovulatory response after synchronization of the superovulatory estrus with a synthetic progestagen and cloprostenol (PG). Estrous cattle were inseminated twice using frozen-thawed semen, and embryos were recovered nonsurgically, on-farm, 7 d later. Between initiation of gonadotrophin treatment and recovery of embryos, 4 blood samples per animal were collected from 26 animals for determination of plasma progesterone (P4) concentration. Two (5%), 28 (70%) and 10 (22%) of the animals were observed in estrus 1.5, 2 and 2.5 to 3 d after PG, respectively. There was no difference (P = 0.7) in the number of palpable CL between animals treated with SUPER-OV (7.6 +/- 1.0; n = 18) and those treated with OVAGEN (7.9 +/- 1.1; n = 22). There was also no significant difference (P > 0.05) between Jersey vs Ayrshire breeds or heifers vs cows in the ovarian response as estimated by the number of palpable CL. However, a higher proportion of Ayrshire cattle and donors treated with OVAGEN yielded a higher total number and viable/transferable embryos than Jersey and SUPER-OV-treated cattle. There was a significant (P < 0.05) correlation between the number of CL and total number of embryos (r = 0.65); the number of transferable embryos was also significantly related to the total number of embryos per recovery (r = 0.85; P < 0.05). For 15 animals with normal P4 profiles, the mean (+/-SEM) plasma P4 concentration was 14.4 +/- 0.8, 0.5 +/- 0.2, 5.4 +/- 1.1 and 39.4 +/- 3.0 nmol L at initiation of gonadotrophin treatment, superovulatory estrus and Days 3 and 7, respectively. The mean (+/-SEM) interval between a PG injection given after embryo recovery and the induced estrus was 7.1 +/- 0.7 d (range 3 to 14 d) and the length of the superovulatory cycle was 24.1 +/- 3.2 d (range 12 to 35 d).  相似文献   

8.
One of the primary limiting factors to superovulation and embryo transfer in cattle has been the large variability in response, both between and within animals. It appears that the primary source of this problem is the variability in the population of gonadotropin-responsive follicles present in ovaries at the time of stimulation. We have shown that treatment of heifers with recombinant bovine somatotropin (rbGH) increases the number of small antral follicles (2 to 5 mm) and, therefore, enhances the subsequent superovulatory response to eCG. To investigate further the potential of using this approach to improve superovulatory regimens in cattle, the effect of rbGH pretreatment on the response to pituitary FSH was studied. The estrous cycles of 16 heifers were synchronized using PGF2alpha. On Day 7 of the synchronized cycle, half of the animals were injected with 320 mg sustained-release formulated rbGH, while the other half received 10 ml saline. Five days later, all heifers were given a decreasing-dose regimen of twice daily injections of oFSH for 4 d, incorporating an injection of PGF2alpha with the fifth FSH treatment, to induce superovulation. All animals were artificially inseminated twice with semen from the same bull during estrus. Ova/embryos were recovered nonsurgically on Days 6 to 8 of the following estrous cycle, and the ovulation rate assessed on Day 9 by laparoscopy. Using the same animals as described above, the experiment was repeated twice, 3 and 6 mo later, with no laparoscopy in the third experiment. The animals were randomized both between experiments and for the day of ova/embryo collection. Pretreatment of heifers with rbGH significantly (P < 0.01) increased the number of ovulations, total number of ova/embryos recovered and the number of transferable embryos. The percentage of transferable embryos was significantly (P < 0.05) increased by rbGH pretreatment. In addition, the incidence (2/16) of follicular cysts with a poor ovulatory response (< 6 ovulations) for the rbGH-pretreated heifers was significantly lower (P < 0.05) when compared with the incidence (7/16) in the control animals. It is concluded that pretreatment with rbGH may provide a useful approach for improving superovulatory response in cattle.  相似文献   

9.
Almeida AP 《Theriogenology》1987,27(2):329-335
A comparison between different superovulatory treatments in dairy cattle was carried out at a commercial embryo transfer unit in Israel. Both pregnant mare serum gonadotrophin (PMSG) and follicle stimulating hormone (FSH) were used, either alone or combined with Syncromate B (SMB). The use of PMSG + SMB significantly decreased the number of corpora lutea present at the time of embryo collection 7 d after insemination, as compared with other treatment regimens. Consequently, a significantly lower number of ova was found in those animals treated with PMSG + SMB. Better superovulatory responses were obtained when FSH, rather than PMSG, was used, regardless of whether they were administered alone or combined with SMB. It was clear that the use of SMB combined either with PMSG or FSH resulted in poorer responses than when either gonadotrophin was used alone.  相似文献   

10.
The production of embryos by superovulation is often reduced in periods of heat stress. The associated reduction in the number of transferable embryos is due to reduced superovulatory response, lower fertilization rate, and reduced embryo quality. There are also reports that success of in vitro fertilization procedures is reduced during warm periods of the year. Heat stress can compromise the reproductive events required for embryo production by decreasing expression of estrus behavior, altering follicular development, compromising oocyte competence, and inhibiting embryonic development. While preventing effects of heat stress can be difficult, several strategies exist to improve embryo production during heat stress. Among these strategies are changing animal housing to reduce the magnitude of heat stress, utilization of cows with increased resistance to heat stress (i.e., cows with lower milk yield or from thermally-adapted breeds), and manipulation of physiological and cellular function to overcome deleterious consequences of heat stress. Effects of heat stress on estrus behavior can be mitigated by use of estrus detection aids or utilization of ovulation synchronization treatments to allow timed embryo transfer. There is some evidence that embryonic survival can be improved by antioxidant administration and that pharmacological treatments can be developed that reduce the degree of hyperthermia experienced by cows exposed to heat stress.  相似文献   

11.
Superovulation protocols have evolved greatly over the past 40 to 50 years. The development of commercial pituitary extracts and prostaglandins in the 1970s, and partially purified pituitary extracts and progesterone-releasing devices in the 1980s and 1990s have provided for the development of many of the protocols that we use today. Furthermore, the knowledge of follicular wave dynamics through the use of real-time ultrasonography and the development of the means by which follicular wave emergence can be controlled have provided new practical approaches. Although some embryo transfer practitioners still initiate superstimulatory treatments during mid-cycle in donor cows, the elective control of follicular wave emergence and ovulation has had a great effect on the application of on-farm embryo transfer, especially when large groups of donors need to be superstimulated at the same time. The most common treatment for the synchronization of follicular wave emergence for many years has been estradiol and progestins. In countries where estradiol cannot be used, practitioners have turned to alternative treatments for the synchronization of follicle wave emergence, such as mechanical follicle ablation or the administration of GnRH to induce ovulation. An approach that has shown promise is to initiate FSH treatments at the time of the emergence of the new follicular wave after GnRH-induced ovulation of an induced persistent follicle. Alternatively, it has been suggested recently that it might be possible to ignore follicular wave status, and by extending the treatment protocol, induce small antral follicles to grow and superovulate. Recently, the mixing of FSH with sustained release polymers or the development of long-acting recombinant FSH products have permitted superstimulation with a single or alternatively, two gonadotropin treatments 48 hours apart, reducing the need for animal handling during superstimulation. Although the number of transferable embryos per donor cow superstimulated has not increased, the protocols that are used today have increased the numbers of transferable embryos recovered per unit time and have facilitated the application of on-farm embryo transfer programs. They are practical, easy to administer by farm personnel, and more importantly, they eliminate the need for detecting estrus.  相似文献   

12.
Objective of the present study was to investigate the effect of season and dose of FSH on superovulatory responses in Iranian Bos indicus beef cattle (Sistani). Cyclic cows, in summer (n=16) and winter (n=16), were assigned randomly to three dose-treatment groups of 120 (n=10), 160 (n=12) and 200 (n=10) total mg of Folltropin-V with injections given twice daily for 4 days in decreasing doses. Estrous cycles were synchronized with two prostaglandin F2alpha injections given 14 days apart. From day 5 after the ensuing cycle, daily ovarian ultrasonography was conducted to determine emergence of the second follicular wave at which time superovulation was initiated. Relative humidity, environmental and rectal temperatures were measured at 08:00, 14:00 and 20:00 h for the 3 days before and 2 days after the estrus of superovulation. Non-surgical embryo recovery was performed on day 7 after estrus. The effects of season, dose, time of estrous expression and all two-way interactions were evaluated on superovulatory responses: total numbers of CL, unovulated follicles (10 mm), ova/embryo, transferable and non-transferable embryos. Season (summer or winter), doses of Folltropin-V (120, 160 or 200 mg NIH) and time of estrous expression (08:00, 14:00 or 20:00 h) did not affect the number of transferable embryos (3.1+/-0.58). When superovulatory estrus was detected at 08:00, a FSH dose effect was detected with the greatest numbers of CL (12.2+/-0.87) and total ova/embryos (12.2+/-1.46) occurring with 200 mg FSH (dosextime of estrous expression; P<0.01).  相似文献   

13.
This study was conducted to compare the superovulatory (SOV) response of dairy cows (n=172) and heifers (n=172), with two SOV treatments started at the mid-luteal-phase of the estrus cycle. Donors were randomly treated either with equine chorionic gonadotrophin (eCG) plus neutra-eCG serum (eCG+N group, n=167) or follicle stimulating gonadotrophin (FSH-P group, n=177).No significant differences were observed among groups in the percentage of superovulatory responsive donors (SR donors; corpora lutea (CL) >/=2), the mean number of total ova, fertilized ova and viable embryos recovered. Cows yielded significantly less total ova and less fertilized ova (P<0.05) and tended to yield less viable embryos (P<0.06) than heifers.Plasma progesterone (P4) concentrations (n=135 donors) on the day of PGF(2alpha) (PGF) injection and on the day of SOV estrus were significantly higher (P<0.01) in eCG+N than in FSH-P donors and, the increase between those 2 days was also significantly higher (P<0.05) in group eCG+N than in group FSH-P, suggesting a higher luteotrophic effect of eCG than FSH-P. SR donors had P4 levels significantly higher (P<0.001) than non-SR donors only on day 5 after the SOV estrus and on the day of embryo recovery. Plasma P4 concentrations at 5 days after the SOV estrus and at embryo recovery correlated significantly (r=0.76, P<0.001).Heifers had significantly higher P4 levels than cows at gonadotrophin injection (P<0.01), PGF injection (P<0.001), 5 days (P<0.01) and 7 days (P<0.001) after the SOV estrus. At day 7 after the SOV estrus, P4 concentrations per ova recovered were significantly higher in heifers than in cows (P<0.01). The increase of plasma P4 per ova recovered, between days 5 and 7 after the SOV estrus, was significantly (P<0.01) higher in heifers than in cows. Also, the increase of plasma P4 between injections of gonadotrophin and PGF was significantly higher (P<0.05) in heifers than in cows.These results suggest that heifers have higher plasma P4 concentrations at diestrus (either before or after the SOV treatment) and this is associated with a higher embryo yield and quality, as compared to lactating cows. These higher plasma P4 concentrations reflect not only differences in ovulation rate as well as the competence of the corpus luteum, which is potentialized by gonadotrophin stimulation.  相似文献   

14.
《Theriogenology》2012,77(9):1583-1593
Currently, timed ovulation induction and fixed-time artificial insemination (FTAI) in superstimulated donors and synchronization protocols for fixed-time embryo transfer (FTET) in recipients can be performed using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F (PGF2α). The control of follicular wave emergence and ovulation at predetermined times, without estrus detection, has facilitated donor and recipient management. However, because Bos taurus cows have subtle differences in their reproductive physiology compared with Bos indicus cattle, one cannot assume that similar responses will be achieved. The present review will focus on the importance of orchestrating donor and recipient management to assure better logistics of procedures to achieve more desirable results with embryo collection and transfer. In addition, this will provide clear evidence that the use of FTAI in superstimulated donors and FTET in embryo recipients eliminates the need to detect estrus with satisfactory results. These self-appointed programs reduce labor and animal handling, facilitating the use of embryo transfer in beef and dairy cattle.  相似文献   

15.
Timed embryo transfer programs for management of donor and recipient cattle   总被引:2,自引:0,他引:2  
Currently, timed ovulation induction and fixed-time artificial insemination (FTAI) in superstimulated donors and synchronization protocols for fixed-time embryo transfer (FTET) in recipients can be performed using GnRH or estradiol plus progesterone/progestin (P4)-releasing devices and prostaglandin F (PGF2α). The control of follicular wave emergence and ovulation at predetermined times, without estrus detection, has facilitated donor and recipient management. However, because Bos taurus cows have subtle differences in their reproductive physiology compared with Bos indicus cattle, one cannot assume that similar responses will be achieved. The present review will focus on the importance of orchestrating donor and recipient management to assure better logistics of procedures to achieve more desirable results with embryo collection and transfer. In addition, this will provide clear evidence that the use of FTAI in superstimulated donors and FTET in embryo recipients eliminates the need to detect estrus with satisfactory results. These self-appointed programs reduce labor and animal handling, facilitating the use of embryo transfer in beef and dairy cattle.  相似文献   

16.
Advanced reproductive technology in the water buffalo   总被引:1,自引:0,他引:1  
Drost M 《Theriogenology》2007,68(3):450-453
Embryo transfer techniques in water buffalo were derived from those in cattle. However, the success rate is much lower in buffaloes, due to their inherent lower fertility and poor superovulatory response. The buffalo ovary has a smaller population of recruitable follicles at any given time than the ovary of the cow (89% fewer at birth). In addition, estrus detection is problematic. Progress in the field of embryo transfer in water buffalo has been slow, and is primarily due to a poor response to superovulation. The average yield of transferable embryos is less than one per superovulated donor. In vitro embryo production could considerably improve the efficacy and logistics of embryo production. The technique of Ovum Pick Up is superior to superovulation; it can yield more transferable embryos per donor on a monthly basis (2.0 versus 0.6). The feasibility of intergeneric embryo transfer between buffalo and cattle has been investigated. No pregnancy resulted after transfer of 13 buffalo embryos to synchronized Holstein heifers. Preliminary successes with nucleus transfer of Bubalus bubalis fetal and adult somatic nuclei into enucleated bovine oocytes and subsequent development to the blastocyst stage have been reported.  相似文献   

17.
The levels of progesterone and estrogen secretion were studied in relationship to the superovulatory response in Jersey cows. Progesterone and estrogen concentrations were measured in superovulated Jersey cows with the objective of correlating the patterns of steroid secretion with embryo yield and quality. Pregnant mare serum gonadotropin (PMSG) was used in combination with prostaglandin F(2) alpha analogue to induce superovulation in 18 multiparous, cyclic cows. Serum progesterone and estradiol levels from cows which exhibited estrus within 24 to 48 h after prostaglandin administration (n=13) were used to estimate the superovulatory response. Sex steroid concentrations at the day of estrus (Day 0) was a strong indicator of embryo yield. Progesterone was negatively (r=-0.56) and estrogen positively (r=0.80) correlated to the number of embryos collected. Dramatic increase in progesterone from Day 0 to Day 7 was a significant indicator of embryo yield. A higher rise of estrogen in the follicular phase was an indicator of a larger number of growing follicles and, consequently, better superovulatory response. Nonresponding animals did not show any significant change in the hormonal profile from the day of PMSG treatment to the day of embryo collection. The estimation of progesterone and estradiol concentrations, simultaneously, gave a more objective prediction of embryo yield.  相似文献   

18.
The objective of this study was to evaluate the transferable embryo recovery rates from superovulated donor cattle after different artificial insemination (AI) schedules. Sixty mixed-breed crossbred females were administered follicle stimulating hormone (FSH) and prostaglandin F(2)alpha (PGF(2)alpha) to induce a superovulatory response. At standing estrus, donor females were randomly allotted to one of five treatment groups for AI. Donors were inseminated with two units of high-quality or low-quality frozen semen at 12, 24, 36, or 48 h after the onset of estrus in treatment Groups I, II, III, and IV, respectively, or inseminated with two units at 12, 24, 36, and 48 h (eight units/donor) in control Group V. Donor females inseminated once at either 12 or 24 h after the onset of estrus did not differ from donors inseminated in Group V in overall fertilization and transferable embryo recovery rates. The highest fertilization rate (89.5%) and transferable embryo recovery rate (74.9%) per donor resulted when AI was performed with high-quality semen at 24 h after the onset of estrus. These findings indicate that repeated insemination of superovulated beef cattle is not necessary to attain optimal fertilization rates and production of transferable quality embryos in beef cattle.  相似文献   

19.
The study examined whether the response of heifers to exogenous gonadotrophin superovulatory treatment could be predicted from a knowledge of previous antral follicular dynamics. During a pretreatment monitoring phase, of 24 normal oestrous cycles (20.1 ± 0.33 days long) observed in 17 heifers, one, 15 and seven cycles showed one, two and three antral follicular waves respectively, as measured by ultrasonography. The subsequent ovulatory response (number of corpora lutea) to ovine FSH stimulation, after a CIDR-B/oestradiol benzoate/prostaglandin analogue cycle synchronisation regime, was not correlated with either oestrous cycle length or follicle wave number during the monitoring phase or with the number of follicles observed at the start of FSH treatment, but was related to the number of follicles observed during the monitoring phase (r = 0.47, P < 0.05). In conclusion, the present results show that the outcome of FSH superovulatory stimulation in heifers cannot be predicted from a knowledge of prior follicular dynamics.  相似文献   

20.
The major limitation to the development of embryo production in cattle is the strong between-animal variability in ovulatory response to FSH-induced superovulation, mainly due to differences in ovarian activity at the time of treatment. This study aimed to establish whether anti-Müllerian hormone (AMH) was an endocrine marker of follicular populations in the cow, as in human, and a possible predictor of the ovarian response to superovulation. Anti-Müllerian hormone concentrations in plasma varied 10-fold between cows before treatment and were found to be highly correlated with the numbers of 3- to 7-mm antral follicles detected by ovarian ultrasonography before treatment (r=0.79, P<0.001) and the numbers of ovulations after treatment (r=0.64, P<0.01). Between-animal differences in AMH concentrations were found to be unchanged after a 3-mo delay (r=0.87, P<0.01), indicating that AMH endocrine levels were characteristic of each animal on a long-term period. The population of healthy 3- to 7-mm follicles was the main target of superovulatory treatments, contained the highest AMH concentrations and AMH mRNA levels compared with larger follicles, and contributed importantly to AMH endocrine levels. In conclusion, AMH was found to be a reliable endocrine marker of the population of small antral gonadotropin-responsive follicles in the cow. Moreover, AMH concentrations in the plasma of individuals were indicative of their ability to respond to superovulatory treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号