首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I present a technique that permits evaluation of the permeability to water of the luminal membrane of the toad urinary bladder, independently of constraints to water flow imposed by the remainder of the tissue. This technique essentially depends on fixation of the luminal membrane with 1% glutaraldehyde for 5 min, and subsequent elimination of cytosolic constraints by decreasing the tonicity of the serosal bath to 1/2 normal strength. The increased hydraulic conductivity found with serosal hypotonicity is readily reversible, as the bladder returns to an isotonic serosal bath. By evaluating water flow in luminally fixed bladders during bathing in normal and hypotonic bath, one may identify the relative contribution of the luminal membrane and the "cytosol" on water flow. Using this technique, I found that the effect of the prostaglandin inhibitor Naproxen to increase vasopressin-stimulated water flow is due to increased luminal membrane permeability. The effect of histidine to increase vasopressin-stimulated water flow, however, depends on increased permeability of both the luminal membrane as well as the underlying structures. The action of serosal hypertonicity to induce water flow is due to an increased luminal permeability. However, serosal hypertonicity decreases "cytosolic" permeability, so that its overall function is a composite effect of its action at the luminal membrane and the "cytosolic" level.  相似文献   

2.
The sudden cessation or sudden decrease in velocity of the protoplasmic streaming of Nitella flexilis is observed whenever an action potential is elicited. The action potential can be generated by an electric stimulus after its refractory period, whether the flow is at a complete standstill or on the way to recovery. The membrane potential is generally decreased more or less when the rate of flow is decreased on application of salts or other agents. There is, however, no parallelism between these two. The membrane potential decreases proportionally with applied voltage of subthreshold intensity, while the rate of flow does not change appreciably. Only on application of a superthreshold voltage does the flow stop suddenly. In one case the rate of flow decreased to half without appreciable decrease in membrane potential. In another case it continued flowing at about one-half rate, although the membrane potential was almost zero. The Q10 of the rate of flow is about 2, while it is 1.1 to 1.5 for the membrane potential. The sudden cessation of the protoplasmic streaming is supposed to be caused by the temporary formation of certain interlinkages among contractile protein networks in the endoplasm during excitation at the cathodal half of Nitella.  相似文献   

3.
Under dark and essentially anaerobic conditions electron flow to either dimethylsulphoxide or trimethylamine-N-oxide in cells of Rhodopseudomonas capsulata has been shown to generate a membrane potential. This conclusion is based on the observation of a red shift in the carotenoid absorption band which is a well characterised indicator of membrane potential in this bacterium. The magnitude of the dimethylsulphoxide- or trimethylamine-N-oxide-dependent membrane potential was reduced either by a protonophore uncoupler of oxidative phosphorylation or synergistically by a combination of a protonophore plus rotenone, an inhibitor of electron flow from NADH dehydrogenase. These findings, together with the observation that venturicidin, an inhibitor of the proton translocating ATPase, did not reduce the membrane potential, show that electron flow to dimethylsulphoxide or trimethylamine-N-oxide is coupled to proton translocation. Thus contrary to some previous proposals dark and anaerobic growth of Rps. capsulata in the presence of dimethylsulphoxide or trimethylamine-N-oxide cannot be regarded as purely fermentative.  相似文献   

4.
Positive feedback controls in proteolytic systems are characterized by thresholds which are regulated by the concentration of the initial stimulus and the kinetic parameters for enzyme generation and inhibition. Significant complexity is added when a positive feedback is localized on a membrane in contact with a flowing medium, such as seen in the early steps of blood coagulation. A partial differential equation model of an archetypal feedback loop is examined in which a proteolytic enzyme catalyzes its own formation from a zymogen on a membrane in contact with a flowing medium. As predicted from prior solution-phase and membrane-phase analyses, the threshold conditions for activation of the system are regulated by the kinetics of enzyme generation and inhibition and by the density of reactant-binding sites on the membrane; but the present analysis also establishes how the feedback threshold is controlled by the flow rate of the adjacent medium and the physical size of the membrane patch on which the feedback loop is localized. For given systems of particular kinetic properties, lower flow rates or larger active patches of membrane can result in the activation threshold being exceeded, whereas higher flow rates or smaller membrane patches can prevent initiation. In addition to numerical simulation, a simplified non-flowing model is analyzed to formulate an approximate mathematical statement of the dependence of the minimum activatable patch size on the kinetic and other parameters.  相似文献   

5.
The availability of material for experimental studies is a key constraint in the development of full-scale bioprocesses. This is especially true for the later stages in a bioprocess sequence such as purification and formulation, where the product is at a relatively high concentration and traditional scale-down models can require significant volumes. Using a combination of critical flow regime analysis, bioprocess modelling, and experimentation, ultra scale-down (USD) methods can yield bioprocess information using only millilitre quantities before embarking on highly demanding full-scale studies. In this study the performance of a pilot-scale tangential flow filtration (TFF) system based on a membrane flat-sheet cassette using pumped flow was predicted by devising an USD device comprising a stirred cell using a rotating disc. The USD device operates with just 2.1 cm2 of membrane area and, for example, just 1.7 mL of feed for diafiltration studies. The novel features of the design involve optimisation of the disc location and the membrane configuration to yield an approximately uniform shear rate. This is characterised using computational fluid dynamics for a defined layer above the membrane surface. A pilot-scale TFF device operating at ~500-fold larger feed volume and membrane area was characterised in terms of the shear rate derived from flow rate-pressure drop relationships for the cassette. Good agreement was achieved between the USD and TFF devices for the flux and resistance values at equivalent average shear rates for a monoclonal antibody diafiltration stage.  相似文献   

6.
This is the first of two papers on an analytical and experimental study of the flow of the erythrocyte membrane. In the experiment to be discussed in detail in the second paper, preswollen human erythrocytes are sphered by aspirating a portion of the cell membrane into a small micropipette; and long, thin, membrane filaments or "tethers" are steadily withdrawn from the cell at a point diametrically opposite to the point of aspiration. The aspirated portion of the membrane furnished a "reservoir" of material that replaces the membrane as it flows as a liquid from the nearly spherical cell body to the cylindrical tether. In this paper we show that an application of the principle of conservation of mass permits the tether radius (approximately 200 A or less) to be measured with the light microscope as the tether is formed and extended at a constant rate. A static analysis of the axisymmetric cell deformation and tether formation process reveals that the tether radius is uniquely determined by the isotropic tension in the membrane and the elastic constitutive (material) behavior of the tether itself. A dynamic analysis of the extensional flow process reveals that the tether radius must decrease as the velocity of the tether is increased and that the decrease depends on both the viscosity of the membrane and the elasticity of the tether. The analysis also shows that these two factors (membrane viscosity and tether elasticity) are readily decomposed and determined separately when flow experiments are performed at different isotropic tensions.  相似文献   

7.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

8.
The practice of calculating the diffusion contribution to the total pressure-driven flow of water through a tight membrane by using the self-diffusion coefficient for tritiated water is examined by a theoretical analysis. Equations of motion for water and membrane in pressure-driven water flow and water, membrane, and tritiated water in self-diffusion of tritiated water are adapted from Bearman and Kirkwood (1958). These equations of motion are used to develop an equation for the pressure-driven flow of water. Because of the lack of specific information about the detailed structure of most membranes, as well as considerations of the need to eliminate some of the mathematical difficulties, an "equivalent capillary" model is used to find a solution to the equation of motion. The use of the equivalent capillary model and possible ambiguities in distinctions between diffusion and hydrodynamic flow are discussed  相似文献   

9.
An electrical potential develops across the membrane when the moving streams in a continuous flow dialyzer module are electrolytes of different composition. The steady-state value for a pair of solutions and flow rates is little affected by introducing air bubbles into the flowing streams. The potential largely depends on the relative mobilities of the ions through the membrane, and these can be often qualitatively assessed from mobilities in water. In automated analysis of ionic metabolites, electrolyte composition of diluent and recipient stream reagents has an effect on sensitivity which can be predicted from these electrical potentials.  相似文献   

10.
A network thermodynamic model was developed to provide insights into the nature of isotonic solute-coupled volume flow in "leaky" epithelia, where the transepithelial volume flow is assumed to be primarily through the cellular pathway. The coupled flows of solute and volume at each membrane in this four membrane model are described by the practical phenomenological equations as developed by Kedem & Katchalsky (1958). The model contains one permeable non-electrolyte solute (s) and a fixed amount of an impermeable non-electrolyte (i) inside the cell. The cell is assumed to be capable of volume regulation under the steady-state experimental conditions simulated. A solute-pump, located in the basolateral membrane, uses feedback regulation to adjust Cs in the cell in order to maintain cell volume at or near control levels in all simulations. Model behavior is, in general, very consistent with experimental observations with respect to tonicity and magnitude of volume flow over a wide range of experimental conditions. Examination of the parameter space suggests the following important features when isotonic solute-coupled volume flow moves primarily through the cellular pathway: (1) the apical membrane reflection coefficient must be less than that of the basolateral membrane; (2) the basement membrane reflection coefficient must be small; (3) the apical membrane solute permeability and reflection coefficient are the two most "sensitive" parameters and need to vary in an inverse manner in order to maintain isotonicity when both solute and volume flows increase; and (4) relationships (1) and (3) above imply the need for at least two separate solute pathways in the apical membrane, one that is shared with volume flow and one that is not.  相似文献   

11.
When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).  相似文献   

12.
The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.  相似文献   

13.
A pore model in which the pore wall has a continuous distribution of electrical charge is used to investigate the osmotic flow through a charged permeable membrane separating electrolyte solutions of unequal concentrations. The pore is treated as a long, circular, cylindrical duct. The analysis is based on a continuum formulation in which a dilute electrolyte solution is described by the coupled Nernst-Planck/Poisson creeping flow equations. Account is taken of the significant size of the electrolyte ions (assumed to be rigid spheres) when compared with the diameter of the membrane pores. Analytical solutions for the ion concentrations, hydrostatic pressure and electrostatic potential in the electrolyte solutions are given and an intra-pore flow solution is derived. A mathematical expression for the osmotic reflection coefficient as a function of the solute ion: pore diameter ratio λ and the solute fluxes is obtained. Approximate solutions are quoted which relate the solute fluxes and the solution electrostatic potentials at the membrane surfaces to the bulk solution concentrations, the membrane pore charge and pore geometry. The osmotic reflection coefficient is thus determined as a function of these parameters.  相似文献   

14.
An enzymic model membrane capable of simulating such permeability characteristics of chemically excitable membranes as generation of an action potential-like overshoot, selectivity over permeants, and saturation and hysteresis of transmembrane flow is constructed by means of coupling a nonlinear, interfacial flow regulating the attachment of permeants to the surface of the oligomeric membrane with a transmembrane allosteric conversion flow recently formulated by Blumenthal. Periods of sustained oscillation, as well as the predicted values of threshold, and height of an action potential-like overshoot are calculated for different choices of external and internal parameters of the membrane.  相似文献   

15.
The intensity of light scattering by blood in a tube of diameter 0.26 cm was measured with an apparatus devised by us at different angles on an incident cross-sectional plane. Changes in angular distribution of light intensity associated with hemolysis, and changes in hematocrit (Ht), red blood cell (RBC) swelling, and flow rate were plotted on polar coordinates. The dyssymmetry index, defined as the ratio of the intensity of light at 45 degrees to that at 135 degrees, was used to characterize the shape of the diagrams of light scattering. The index decreased with Ht, flow rate, but increased with RBC swelling. It is concluded that light scattering by blood requires intactness of the RBC membrane. Even when the cell membrane is intact, light scattering is subject to changes with the flow rate of blood, presumably due to RBC aggregation.  相似文献   

16.
The lateral geniculate nucleus of the cat was explored with micropipettes having submicroscopic tips. The only reliably recorded intracellular activity was from axons. Following orthodromic stimulation, the potentials recorded by the extracellular electrodes registered the net flow of current across the soma-dendritic membrane of the principal cell bodies. The current has three phases of flow away from the soma-dendritic membrane followed by a flow of current toward this membrane. The first component is ascribed to synaptic activity. Subsequent components are ascribed to the activity of the initial segment of the axon and a limited area of high threshold membrane on the soma. The evidence is interpreted as suggesting that most of the soma-dendritic membrane is excited synaptically to produce a postsynaptic potential, but is not excited electrically and does not produce a propagating spike.  相似文献   

17.
BACKGROUND: The kinetics of protein-protein interactions can be monitored with optical biosensors based on the principles of either surface plasmon resonance or mirror resonance. These methods are straightforward for soluble proteins, but not for proteins inserted in the plasma membrane. METHODS: We monitored with an IASys biosensor system, based on a resonant mirror: (1) the binding of cells to an immobilized ligand, (2) the binding of a soluble ligand to immobilized cells, and (3) the binding of a soluble ligand to immobilized plasma membrane vesicles. For comparison, the kinetics of fluorescent antibody binding to intact cells were measured by dynamic flow cytometry. RESULTS: With an optical biosensor, the useful configuration is the one based on immobilized plasma membrane vesicles. However, signals can be detected only for very abundant binding sites (>10(6) per cell). Dynamic flow cytometry allows the accurate determination of the k(on) and k(off) of antibody binding. The sensitivity of the method is two orders of magnitude better than with an optical biosensor. CONCLUSIONS: Although biosensors constitute a method of choice for measuring the interactions between soluble proteins, they are not well suited for measuring the interaction between soluble proteins and membrane-embedded proteins. On the contrary, flow cytometry is well suited for such an application, when it is used in a dynamic mode.  相似文献   

18.
The fluid force acting on single human red cells in a high shear flow was analyzed. A two-dimensional elliptical microcapsule as a model of the deformed red cells was adopted to numerically calculate the distributions of the shear forces on both sides of the cell membrane. It is theoretically shown that the cell membrane undergoes an unsteady cyclic loading under the rotational motion around the interior. The mechanism leading to blood cell trauma is examined by repeatedly loading the continuously moving cell membrane.  相似文献   

19.
A dipole model is presented for ion flow in excitable membranes. This model considers the membrane to be composed of two distinct regions: a polar region and a nonpolar region. Further, the construction of an electrodiffusive formalism which takes explicit account of the energy of partition required by an ion for passage from external fluid to nonpolar region is presented. In the polar region a cooperative effect is considered which produces a configurational transition of the polar group dependent only on membrane voltage. A resulting change in voltage drop across the polar group is brought about by this configurational transition. This gives rise to a negative steady-state resistance for the equimolar case, in reasonable agreement with observation. The theory, in addition, is in reasonable accord with nonequimolar ion flow, and provides an explanation for such effects as the following: the intercept of the voltage-current characteristic, the ion membrane concentrations inferred from electrodiffusion theories, and the effects of polyvalent cations  相似文献   

20.
《Autophagy》2013,9(3):385-387
The understanding of the membrane flow process during autophagosome formation is essential to illuminate the role of autophagy under various disease-causing conditions. Atg9 is the only identified integral membrane protein required for autophagosome formation, and it is thought to cycle between the membrane sources and the phagophore assembly site (PAS). Thus, Atg9 may play an important role as a membrane carrier. We report the self-interaction of Atg9 and generate an Atg9 mutant that is defective in this interaction. This mutation results in abnormal autophagy, due to altered phagophore formation as well as inefficient membrane delivery to the PAS. Based on our analyses, we discuss a model suggesting dual functions for the Atg9 complex: by reversibly binding to another Atg9 molecule, Atg9 can both promote lipid transport from the membrane origins to the PAS, and also help assemble an intact phagophore membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号