首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
药物洗脱支架(DES)在冠状动脉疾病的治疗中起到巨大作用,不但能机械支撑血管狭窄区,而且可以通过持续释放药物显著降低病灶处再狭窄率。然而,长期临床研究表明,载药DES在后期有引发血栓的风险。在DES表面载入基因药物,通过表面涂层输送系统局部缓慢释放治疗基因,能针对引起再狭窄的细胞过程进行修改。选择合适的治疗基因,可以抑制内膜增生,促进再内皮化,提高洗脱支架的有效性和安全性,是非常有前途的抗再狭窄方法。同时,良好的涂层材料不仅改善了支架表面的生物相容性,更能通过不同的基因药物输送系统有效控制治疗基因的释放速率。本文首先介绍了一部分针对再狭窄的治疗基因,在此基础上,综合阐述了基因缓释系统中使用的材料和技术,分析提炼了基因缓释系统的释放机理,举例分析了载基因洗脱支架的研究进展,并展望了该领域的发展前景。  相似文献   

2.
Drug-eluting stents (DES), which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours) or very slowly (over periods of several months up to one year) at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices.  相似文献   

3.
The emergence of drug-eluting stents (DES) as a viable replacement for bare metal stenting has led to a significant decrease in the incidence of clinical restenosis. This is due to the transport of anti-restenotic drugs from within the polymer coating of a DES into the artery wall which arrests the cell cycle before restenosis can occur. The efficacy of DES is still under close scrutiny in the medical field as many issues regarding the effectiveness of DES drug transport in vivo still exist. One such issue, that has received less attention, is the limiting effect that stent strut compression has on the transport of drug species in the artery wall. Once the artery wall is compressed, the stents ability to transfer drug species into the arterial wall can be reduced. This leads to a reduction in the spatial therapeutic transfer of drug species to binding sites within the arterial wall. This paper investigates the concept of idealised variable compression as a means of demonstrating how such a stent design approach could improve the spatial delivery of drug species in the arterial wall. The study focused on assessing how the trends in concentration levels changed as a result of artery wall compression. Five idealised stent designs were created with a combination of thick struts that provide the necessary compression to restore luminal patency and thin uncompressive struts that improve the transport of drugs therein. By conducting numerical simulations of diffusive mass transport, this study found that the use of uncompressive struts results in a more uniform spatial distribution of drug species in the arterial wall.  相似文献   

4.
Despite technical and mechanical improvement in coronary stents the incidence of restenosis caused by in-stent neointimal hyperplasia remains high. Oral administration of numerous pharmacological agents has failed to reduce restenosis after coronary stenting in humans, possibly owing to insufficient local drug concentration. Therefore, drug-eluting stents were developed as a vehicle for local drug administration. The authors developed a new drug-eluting polymer stent that is made of poly-l-lactic acid polymer mixed with tranilast, an anti-allergic drug that inhibits the migration and proliferation of vascular smooth muscle cells induced by platelet-derived growth factor and transforming growth factor->1. Polymer stents might be superior to polymer-coated metallic stents as local drug delivery stents in terms of biodegradation and the amount of loaded drug. Drug-mixed polymer stents can be loaded with a larger amount of drug than can drug-coated metallic stents because the polymer stent struts can contain the drug. Clinical application is required to assess the safety and efficacy of drug-eluting polymer stents against stent restenosis.  相似文献   

5.
In-stent restenosis occurs in coronary arteries after implantation of drug-eluting stents with non-uniform restenosis thickness distribution in the artery cross section. Knowledge of the spatio-temporal drug uptake in the arterial wall is useful for investigating restenosis growth but may often be very expensive/difficult to acquire experimentally. In this study, local delivery of a hydrophobic drug from a drug-eluting stent implanted in a coronary artery is mathematically modelled to investigate the drug release and spatio-temporal drug distribution in the arterial wall. The model integrates drug diffusion in the coating and drug diffusion with reversible binding in the arterial wall. The model is solved by the finite volume method for both high and low drug loadings relative to its solubility in the stent coating with varied isotropic–anisotropic vascular drug diffusivities. Drug release profiles in the coating are observed to depend not only on the coating drug diffusivity but also on the properties of the surrounding arterial wall. Time dependencies of the spatially averaged free- and bound-drug levels in the arterial wall on the coating and vascular drug diffusivities are discussed. Anisotropic vascular drug diffusivities result in slightly different average drug levels in the arterial wall but with very different spatial distributions. Higher circumferential vascular diffusivity results in more uniform drug loading in the upper layers and is potentially beneficial in reducing in-stent restenosis. An analytical expression is derived which can be used to determine regions in the arterial with higher free-drug concentration than bound-drug concentration.  相似文献   

6.
The introduction of the drug-eluting stent (DES) proved to be an important step forward in reducing the rates of restenosis and target lesion revascularization after percutaneous coronary intervention (PCI). However, the rapid implementation of DES in standard practice and the expansion of the indications for PCI to high-risk patients and complex lesions also introduced a new problem. DES in-stent restenosis (ISR) occurs in 3 ?? 20% of patients, depending on the patient, lesion characteristics and the DES type. The initial commercially available DES used a stainless steel platform coated with a permanent polymer to provide a controlled release of an anti-restenotic drug. The platform, polymer and drug are all targets for improvement. More advanced metallic and fully biodegradable stent platforms are currently under investigation. The permanent polymer coating, a likely contributor to adverse events, is being superseded by biocompatible and bioabsorbable alternatives. New drugs and drug combinations are also a research goal, as interventional cardiologists and the industry strive towards a safer anti-restenotic DES. This paper reviews the benefits, risks, and current status of biodegradable drug-eluting stents.  相似文献   

7.
Our paper builds on existing research into conventional bare metal stents in order to assess new devices specifically designed for coronary bifurcation angioplasty. The first aim is to validate the numerical model against data from in vitro experiments on stented coronary phantoms. A surface mesh was built in accordance with micro-computed tomography images obtained from coronary stents implanted in silicone models and used for numerical analysis. Computational simulations for steady and unsteady cases generally agreed with their experimental counterparts. A second objective is to compare the hemodynamic performance of one of these new devices (Stentys) to that of conventional devices and stenting techniques in a simplified coronary bifurcation model. Four different coronary bifurcation stenting techniques were analyzed. We have focused on factors contributing to restenosis, such as wall shear stress (WSS), oscillatory shear index (OSI), pressure loss, and local normalized helicity (LNH). It was found that bifurcation-specific stents implanted in the side branch led to increased malapposition. This effect has proved to be more important than stent specific design characteristics such as strut size (different for conventional and Stentys stent). This conclusion is confirmed by means of drop in pressure and mechanical energy loss rate calculation; for the latter, the increase ranged from 9% to 17%, depending on the stenting technique, when dedicated stents were implanted in the side branch. The behavior patterns presented in this study should be double-checked against those obtained in more realistic geometries.  相似文献   

8.
BACKGROUND: Coronary artery stenting is particularly useful during percutaneous coronary intervention for long lesions previously associated with a low procedural success rate and a high complication rate of dissection and occlusion. Current treatment options include implantation of a single long stent, multiple contiguous stents, or 'spot' stenting. However, multiple stent implantation may result in sections of overlapping stent or gaps of unstented segments and is an independent predictor of restenosis. The early and intermediate clinical outcome of single and multiple long stent (>/= 30 mm) implantation is not established. METHODS AND RESULTS: The authors retrospectively identified 123 consecutive patients who had undergone stenting using one or more long coronary stents. Baseline clinical data, procedural outcomes and completed clinical follow-up to 52 weeks were obtained by case-note review. The majority (69%) required intervention for stable coronary disease. Seventy-seven per cent of lesions were either type B2 or C and only 2% were in saphenous vein grafts. The procedural success rate was 94%. A total of 15 major events occurred in 13 patients (11%). Ten acute events occurred and five events were during the follow-up period from 30 days to 52 weeks. Two patients died, one from uncontrolled bleeding secondary to the use of antithrombotic agents and one at four weeks due to sudden death. One patient had a postprocedural infarct. Two patients required in-hospital repeat revascularization for acute vessel closure and eight required revascularization during follow-up (three cases of occlusion/thrombosis and five cases of restenosis). CONCLUSIONS: The use of long coronary stents (>/= 30 mm) for the treatment of long diffuse native vessel disease, saphenous vein graft disease and long coronary dissections is associated with a reasonable procedural success rate and acceptable early and intermediate-term clinical outcomes.  相似文献   

9.
The introduction of stents to clinical practice in 1987 was the major breakthrough in the field of percutaneous coronary intervention (PCI). The use of stenting has drastically improved the outcomes of traditional PCI. First stents were approved for bailout and treatment of dissections, reducing dramatically the need for emergent coronary artery bypass grafting (CABG) as a result of vessel closure during PCI. Later stents were proven to reduce the restenosis rate of PCI from 30%-40% with balloon angioplasty to 15%-20% with stents, primarily by eliminating elastic recoil and vascular remodeling as shown by intravascular ultrasound (IVUS) studies. These outcomes have led to a wide acceptance of stenting as the strategy of choice for more than 80% of all PCI procedures performed. The current review focuses on the following topics: (1) strategies in drug selection to reduce neointimal proliferation, (2) stent designs and polymer selection as a platform for drug-eluting stents, (3) review of major preclinical and clinical experimental work performed in the field, and (4) a discussion of the potential and limitations of the technology.  相似文献   

10.

Background

Stent length serves as a predictor of restenosis in use of bare metal stents (BMS). This has been demonstrated in a feasibility study that used a single short BMS implant (<9 mm) in a high proportion of lesions; the study observed a low rate of restenosis.

Methods

We performed a pilot prospective study to investigate in a series of consecutive patients the immediate and long-term effects of implantation of either 1) a single short BMS for all lesions with low probability of restenosis or 2) a drug-eluting stent (DES) for all other lesions.

Results

The 200 patients studied had 236 coronary artery lesions that were treated with short BMS in 168/236 patients (71.2%) and with DES in 68/236 patients (28.8%). Angiographic success was achieved in 230/236 lesions (97.5%) and procedural success in 194/200 patients (97.0%). Restenosis occurred in 15/153 lesions (9.8%) after short BMS, in 3/62 lesions (4.8%) after DES, and in 18/215 of all lesions (8.4%) angiographically controlled after six to eight months. Target vessel revascularization was performed in 16/218 lesion (7.4%).

Conclusion

Most of the coronary artery lesions in this small group of consecutive patients were treated sufficiently with a single BMS implant. This differential approach of treating suitable lesions in medium- to large-sized vessels with a single short BMS device and treating all other lesions with a DES implant resulted in a low incidence of restenosis.  相似文献   

11.

Background

Stent length serves as a predictor of restenosis in use of bare metal stents (BMS). This has been demonstrated in a feasibility study that used a single short BMS implant (<9 mm) in a high proportion of lesions; the study observed a low rate of restenosis.

Methods

We performed a pilot prospective study to investigate in a series of consecutive patients the immediate and long-term effects of implantation of either 1) a single short BMS for all lesions with low probability of restenosis or 2) a drug-eluting stent (DES) for all other lesions.

Results

The 200 patients studied had 236 coronary artery lesions that were treated with short BMS in 168/236 patients (71.2%) and with DES in 68/236 patients (28.8%). Angiographic success was achieved in 230/236 lesions (97.5%) and procedural success in 194/200 patients (97.0%). Restenosis occurred in 15/153 lesions (9.8%) after short BMS, in 3/62 lesions (4.8%) after DES, and in 18/215 of all lesions (8.4%) angiographically controlled after six to eight months. Target vessel revascularization was performed in 16/218 lesion (7.4%).

Conclusion

Most of the coronary artery lesions in this small group of consecutive patients were treated sufficiently with a single BMS implant. This differential approach of treating suitable lesions in medium- to large-sized vessels with a single short BMS device and treating all other lesions with a DES implant resulted in a low incidence of restenosis.  相似文献   

12.
Drug-eluting stents (DES) significantly reduce the risk of restenosis after percutaneous coronary revascularisation, but an increased risk of late stent thrombosis (LST) has been put forward as a major safety concern. Meta-analysis of clinical trials, however, does not support this caveat. Even so, many interventional cardiologists think that LST is associated with DES and related to delayed endothelialisation. This hypothesis is based on autopsy studies and clinical intracoronary angioscopy. In autopsy studies, differences between endothelialisation of DES and baremetal stents (BMS) have been reported. Most preclinical studies, however, have failed to show any significant differences in endothelialisation between DES and BMS. Our own studies, using the porcine coronary artery model, also suggest that DES show no differences in re-endothelialisation. However, DES do delay vascular healing and induce endothelial dysfunction. This paper will review clinical and animal studies which consider re-endothelialisation and LST. (Neth Heart J 2009;17:177–81.)  相似文献   

13.

Background

Treatment of arterial bifurcation lesions using drug-eluting stents (DES) is now common clinical practice and yet the mechanisms governing drug distribution in these complex morphologies are incompletely understood. It is still not evident how to efficiently determine the efficacy of local drug delivery and quantify zones of excessive drug that are harbingers of vascular toxicity and thrombosis, and areas of depletion that are associated with tissue overgrowth and luminal re-narrowing.

Methods and Results

We constructed two-phase computational models of stent-deployed arterial bifurcations simulating blood flow and drug transport to investigate the factors modulating drug distribution when the main-branch (MB) was treated using a DES. Simulations predicted extensive flow-mediated drug delivery in bifurcated vascular beds where the drug distribution patterns are heterogeneous and sensitive to relative stent position and luminal flow. A single DES in the MB coupled with large retrograde luminal flow on the lateral wall of the side-branch (SB) can provide drug deposition on the SB lumen-wall interface, except when the MB stent is downstream of the SB flow divider. In an even more dramatic fashion, the presence of the SB affects drug distribution in the stented MB. Here fluid mechanic effects play an even greater role than in the SB especially when the DES is across and downstream to the flow divider and in a manner dependent upon the Reynolds number.

Conclusions

The flow effects on drug deposition and subsequent uptake from endovascular DES are amplified in bifurcation lesions. When only one branch is stented, a complex interplay occurs – drug deposition in the stented MB is altered by the flow divider imposed by the SB and in the SB by the presence of a DES in the MB. The use of DES in arterial bifurcations requires a complex calculus that balances vascular and stent geometry as well as luminal flow.  相似文献   

14.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection-diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   

15.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection–diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   

16.

Development and application of advanced mechanical models of soft tissues and their growth represent one of the main directions in modern mechanics of solids. Such models are increasingly used to deal with complex biomedical problems. Prediction of in-stent restenosis for patients treated with coronary stents remains a highly challenging task. Using a finite element method, this paper presents a mechanistic approach to evaluate the development of in-stent restenosis in an artery following stent implantation. Hyperelastic models with damage, verified with experimental results, are used to describe the level of tissue damage in arterial layers and plaque caused by such intervention. A tissue-growth model, associated with vessel damage, is adopted to describe the growth behaviour of a media layer after stent implantation. Narrowing of lumen diameter with time is used to quantify the development of in-stent restenosis in the vessel after stenting. It is demonstrated that stent designs and materials strongly affect the stenting-induced damage in the media layer and the subsequent development of in-stent restenosis. The larger the artery expansion achieved during balloon inflation, the higher the damage introduced to the media layer, leading to an increased level of in-stent restenosis. In addition, the development of in-stent restenosis is directly correlated with the artery expansion during the stent deployment. The correlation is further used to predict the effect of a complex clinical procedure, such as stent overlapping, on the level of in-stent restenosis developed after percutaneous coronary intervention.

  相似文献   

17.
The current treatment for coronary restenosis following balloon angioplasty involves the use of a mechanical or a drug-eluting stent. Despite the high usage of commercially-available drug-eluting stents in the cardiac field, there are a number of limitations. This review will present the background ofrestenosis, go briefly into the molecular and cellular mechanisms of restenosis, the use of mechanical stents in coronary restenosis, and will provide an overview of the drugs and genes tested to treat restenosis. The primary focus of this article is to present a comprehensive overview on the use of nanoparticulate delivery systems in the treatment of restenosis both in-vitro and in-vivo. Nanocarriers have been tested in a variety of animal models and in human clinical trials with favorable results. Polymer-based nanoparticles, liposomes, and micelles will be discussed, in addition to the findings presented in the field of cardiovascular drug targeting. Nanocarrier-based delivery presents a viable alternative to the current stent based therapies.  相似文献   

18.
Embolic coiling is the most popular endovascular treatment available for cerebral aneurysms. Nevertheless, the embolic coiling of wide-neck aneurysms is challenging and, in many cases, ineffective. Use of highly porous stents to support coiling of wide-neck aneurysms has become a common procedure in recent years. Several studies have also demonstrated that high porosity stents alone can significantly alter aneurysmal hemodynamics, but differences among different stent configurations have not been fully characterized. As a result, it is usually unclear which stent configuration is optimal for treatment. In this paper, we present a flow study that elucidates the influence of stent configuration on cerebral aneurysm fluid dynamics in an idealized wide-neck basilar tip aneurysm model. Aneurysmal fluid dynamics for three different stent configurations (half-Y, Y and, cross-bar) were first quantified using particle image velocimetry and then compared. Computational fluid dynamics (CFD) simulations were also conducted for selected stent configurations to facilitate validation and provide more detailed characterizations of the fluid dynamics promoted by different stent configurations. In vitro results showed that the Y stent configuration reduced cross-neck flow most significantly, while the cross-bar configuration reduced velocity magnitudes within the aneurysmal sac most significantly. The half-Y configuration led to increased velocity magnitudes within the aneurysmal sac at high parent-vessel flow rates. Experimental results were in strong agreement with CFD simulations. Simulated results indicated that differences in fluid dynamic performance among the different stent configurations can be attributed primarily to protruding struts within the bifurcation region.  相似文献   

19.
Stents have dramatically improved the treatment of coronary artery disease. Since the implantation of stents changes the geometry and dynamics of the coronary artery, it is reasonable to hypothesize that some of these changes may have an important effect on the development of atherosclerosis by modulating the mechanical environment. In this paper, we presented a method to compare the geometric dynamics of the coronary artery before and after stenting using biplane angiography. Two cases are reviewed and a number of parameters are proposed to describe the longitudinal change of the vessel before and after stenting. This analysis technique has the potential to identify some aspects of stent design and procedure that might improve the success rate with this therapeutic approach.  相似文献   

20.
Coronary artery disease results in blockages or narrowing of the artery lumen. Drug eluting stents (DES) were developed to replace bare metal stents in an effort to combat re-blocking of the diseased artery following treatment. The numerical models developed within this study focus on representing the changing trends of drug delivery from an idealised DES in an arterial wall with an anisotropic ultra-structure. To reduce the computational burden of solving coupled physics problems, a model reduction strategy was adopted. Particular focus has been placed upon adequately modelling the influence of strut compression as there is a paucity of numerical studies that account for changes in transport properties in compressed regions of the arterial wall due to stent deployment. This study developed an idealised numerical modelling framework to account for the changes in the directionally dependent porosity and tortuosities of the arterial wall as a result of radial strut compression. The results show that depending on the degree of strut compression, trends in therapeutic drug delivery within the arterial wall can be either increased or decreased. The study highlights the importance of incorporating compression into numerical models to better represent transport within the arterial wall and suggests an appropriate numerical modelling framework that could be utilised in more realistic patient specific arterial geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号