首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Docetaxel (Doc) and adriamycin (Adr) are two of the most effective chemotherapeutic agents in the treatment of breast cancer. However, their efficacy is often limited by the emergence of multidrug resistance (MDR). The purpose of this study was to investigate MDR mechanisms through analyzing systematically the expression changes of genes related to MDR in the induction process of isogenic drug resistant MCF-7 cell lines. Isogenic resistant sublines selected at 100 and 200 nM Doc (MCF-7/100 nM Doc and MCF-7/200 nM Doc) or at 500 and 1,500 nM Adr (MCF-7/500 nM Adr and MCF-7/1,500 nM) were developed from human breast cancer parental cell line MCF-7, by exposing MCF-7 to gradually increasing concentrations of Doc or Adr in vitro. Cell growth curve, flow cytometry and MTT cytotoxicity assay were preformed to evaluate the MDR characteristics developed in the sublines. Some key genes on the pathways related to drug resistance (including drug-transporters: MDR1, MRP1 and BCRP; drug metabolizing-enzymes: CYP3A4 and glutathione S-transferases (GST) pi; target genes: topoisomerase II (TopoIIα) and Tubb3; apoptosis genes: Bcl-2 and Bax) were analyzed at RNA and protein expression levels by real time RT-qPCR and western blot, respectively. Compared to MCF-7/S (30.6 h), cell doubling time of MCF-7/Doc (41.6 h) and MCF-7/Adr (33.8 h) were both prolonged, and the cell proportion of resistant sublines in G1/G2 phase increased while that in S-phase decreased. MCF-7/100 nM Doc and MCF-7/200 nM Doc was 22- and 37-fold resistant to Doc, 18- and 32-fold to Adr, respectively. MCF-7/500 nM Adr and MCF-7/1,500 nM Adr was 61- and 274-fold resistant to Adr, three and 12-fold to Doc, respectively. Meantime, they also showed cross-resistance to the other anticancer drugs in different degrees. Compared to MCF-7/S, RT-qPCR and Western blot results revealed that the expression of MDR1, MRP1, BCRP, Tubb3 and Bcl-2 were elevated in both MCF-7/Doc and MCF-7/Adr, and TopoIIα, Bax were down-regulated in both the sublines, while CYP3A4, GST pi were increased only in MCF-7/Doc and MCF-7/Adr respectively. Furthermore, the changes above were dose-dependent. The established MCF-7/Doc or MCF-7/Adr has the typical MDR characteristics, which can be used as the models for resistance mechanism study. The acquired process of MCF-7/S resistance to Doc or Adr is gradual, and is complicated with the various pathways involved in. There are some common resistant mechanisms as well as own drug-specific changes between both the sublines.  相似文献   

2.
The development of resistance to anticancer drugs urges the search for different treatment modalities. Several investigators have reported the concomitant development of drug resistance and resistance to natural killer (NK), lymphokine-activated killer (LAK) or monocyte/macrophage cell lysis, while others described unchanged or even increased susceptibility. We investigated this subject in the rat colon carcinoma cell line, CC531-PAR, which is intrinsically multidrug-resistant (MDR), and in three sublines derived from this parental cell line: a cell line with an increased MDR phenotype (CC531-COL), a revertant line from CC531-COL (CC531-REV), which demonstrates enhanced sensitivity to anticancer drugs of the MDR phenotype, and an independently developed cisplatin-resistant line (CC531-CIS). In a 4-h51Cr-release assay we found no difference in susceptibility to NK cell lysis. No significant differences in lysability by adherent LAK (aLAK) cells were observed in a 4-h assay. In a prolonged 20-h51Cr-release assay an enhanced sensitivity to aLAK-cell-mediated lysis was observed in the revertant, P-glycoprotein-negative cell line and in the cisplatin-resistant cell line (CC531-CIS). None of the cell lines was completely resistant to lysis by aLAK cells. Therefore, a role for immunotherapy in the treatment of drug-resistant tumors remains a realistic option.  相似文献   

3.
Studies on low-level MDR cells   总被引:3,自引:0,他引:3  
Acquired or spontaneous resistance is a major clinical problem in the treatment of cancer. Low levels of MDR gene expression or P-glycoprotein have been correlated with a high level of drug resistance in vitro and a poor response to chemotherapy in some tumors. A strong correlation between MDR mRNA, P-glycoprotein levels and degree of drug resistance has not been found in several resistant model tumor cell lines. In some cell lines at low and high level of resistance different mechanisms seem to be involved.  相似文献   

4.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expression and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict--but do not exclude--that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
MDR has been studied extensively in mammalian cell lines. According to usual practice, the MDR phenotype is characterized by the following features: cross resistance to multiple chemotherapeutic agents (lipophilic cations), defective intracellular drug accumulation and retention, overexpression of P-gp (often accompanied by gene amplification), and reversal of the phenotype by addition of calcium channel blockers. An hypothesis for the function of P-gp has been proposed in which P-gp acts as a carrier protein that actively extrudes MDR compounds out of the cells. However, basic questions, such as what defines the specificity of the pump and how is energy for active efflux transduced, remain to be answered. Furthermore, assuming that P-gp acts as a drug transporter, one will expect a relationship between P-gp expression and accumulation defects in MDR cell lines. A review of papers reporting 97 cell lines selected for resistance to the classical MDR compounds has revealed that a connection exists in most of the reported cell lines. However, several exceptions can be pointed out. Furthermore, only a limited number of well characterized series of sublines with different degrees of resistance to a single agent have been reported. In many of these, a correlation between P-gp expresson and transport properties can not be established. Co-amplification of genes adjacent to the mdr1 gene, mutations [122], splicing of mdr1 RNA [123], modulation of P-gp by phosphorylation [124] or glycosylation [127], or experimental conditions [26,78] could account for some of the complexity of the phenotype and the absence of correlation in some of the cell lines. However, both cell lines with overexpression of P-gp without increased efflux [i.e., 67,75] and cell lines without P-gp expression and accumulation defects/increased efflux [i.e., 25,107] have been reported. Thus, current results from MDR cell lines contradict - but do not exclude - that P-gp acts as multidrug transporter. Other models for the mechanism of resistance have been proposed: (1) An energy-dependent permeability barrier working with greater efficacy in resistant cells. This hypothesis is supported by studies of influx which, although few, all except one demonstrate decreased influx in resistant cells; (2) Resistant cells have a greater endosomal volume, and a greater exocytotic activity accounts for the efflux. Furthermore, large amounts of P-gp in the plasma membrane altering the ultrastructure and generalized changes, such as increases or decreases in membrane fluidity, alterations in lipid composition, changes in transmembrane pH gradient and membrane potential have been described in MDR cell lines and could account for some of the findings.  相似文献   

6.
The simultaneous development of resistance to the cytotoxic effects of several classes of natural product anticancer drugs, after exposure to only one of these agents, is referred to as multiple drug resistance (MDR). At least two distinct mechanisms for MDR have been postulated: that associated with P-glycoprotein and that thought to be due to an alteration in DNA topoisomerase II activity (at-MDR). We describe studies with two sublines of human leukemic CCRF-CEM cells approximately 50-fold resistant (CEM/VM-1) and approximately 140-fold resistant (CEM/VM-1-5) to VM-26, a drug known to interfere with DNA topoisomerase II activity. Each of these lines is cross-resistant to other drugs known to affect topoisomerase II but not cross-resistant to vinblastine, an inhibitor of mitotic spindle formation. We found little difference in the amount of immunoreactive DNA topoisomerase II in 1.0 M NaCl nuclear extracts of the two resistant and parental cell lines. However, topoisomerase II in nuclear extracts of the resistant sublines is altered in both catalytic activity (unknotting) of and DNA cleavage by this enzyme. Also, the rate at which catenation occurs is 20-30-fold slower with the CEM/VM-1-5 preparations. The effect of VM-26 on both strand passing and DNA cleavage is inversely related to the degree of primary resistance of each cell line. Our data support the hypothesis that at-MDR is due to an alteration in topoisomerase II or in a factor modulating its activity.  相似文献   

7.
Multiple Drug Resistance Mechanisms in Cancer   总被引:1,自引:0,他引:1  
Multiple drug resistance (multidrug resistance; MDR), a phenomenon whereby human tumours that acquire resistance to one type of therapy are found to be resistant to several other drugs that are often quite different in both structure and mode of action, has been recognised clinically for several decades. An important advance in our understanding of MDR came with the identification of P-glycoprotein and other related transporters that were expressed in some cancer cells and could recognise and catalyse the efflux of diverse anticancer drugs from cells. A second advance came from an understanding of the mechanism of programmed cell death or apoptosis, leading to MDR mediated by increased to resistance to anticancer drug-induced apoptosis. A third advance came with the finding that the proliferation of human tumours was driven by a small population of self-renewing tumour cells, focussing attention on the MDR properties of these so-called tumour stem cells rather than on the cells that comprised the majority of the tumour population. A fourth advance was the delineation of features of the tumour microenvironment, including immunosuppression, which essentially provided tumour stem cells with an MDR phenotype. Most published work on the overcoming of MDR has concentrated on inhibition of drug transporters but the complexity of mechanisms contributing demands a broad strategy for the development of methods to overcome MDR in a clinical setting.  相似文献   

8.
Cullen K  Davey R  Davey M 《Cytometry》2001,43(3):189-194
BACKGROUND: Multidrug resistance (MDR) is mediated by the drug resistance proteins, the multidrug resistance-associated protein (MRP) and P-glycoprotein, both of which confer resistance by the active efflux of chemotherapeutic drugs from the cell. Reduced Fas (CD95/APO-1) expression and resistance to Fas-mediated apoptosis have also been correlated with P-glycoprotein-mediated MDR. METHODS: We investigated cell surface Fas expression (using anti-Fas monoclonal antibody DX2.1) in a series of MRP-expressing drug-resistant leukemia sublines, and P-glycoprotein-expressing leukemia sublines, and their susceptibility to apoptosis induced by anti-Fas treatment (CH-11 monoclonal antibody). Caspase-3 activation was detected by Western blot and apoptosis was determined by flow cytometry with 7-aminoactinomycin D (7-AAD) staining of cells. RESULTS: Fas expression was not reduced in either the MRP- or P-glycoprotein-expressing drug-resistant cell lines, although expression was reduced by 15% in one low-level drug-resistant subline. Expression of MRP or P-glycoprotein did not confer resistance to caspase-3 activation or to anti-Fas-induced cell death. CONCLUSIONS: MDR mediated by the drug transport proteins MRP and P-glycoprotein does not correlate with resistance to Fas-mediated cell death or resistance to caspase-3 activation.  相似文献   

9.
This article revies the patterns of cross-resistance identified in various P-glycoprotein-mediated and non-P-glycoprotein-mediated drug resistant mammalian tumour cell lines. The differing patterns of cross-resistance and the variable levels of resistance expressed are summarised and discussed. Although the mechanism by which P-glycoprotein can recognise and transport a large group of structurally-unrelated substrates remains to be defined, the recent evidence indicating that membrane associated domains participate in substrate recognition and binding is summarised, and other possible explanations for these variable cross-resistance patterns are considered. Amongst the non-P-glycoprotein-overexpressing multidrug resistant cell lines, two subsets are clearly identifiable, one lacking and the other expressing cross-resistance to the Vinca alkaloids. Resistance mechanisms implicated in these various sublines and possible explanations for their differing levels and patterns of cross-resistance are summarised.Clinical resistance is identified in patients following treatment not only with antitumour drugs, but also after radiotherapy. Experimental data providing a biological basis for this observation are summarised. A distinctive multiple drug resistance phenotype has been identified in tumour cells following exposurein vitro to fractionated X-irradiation characterised by: the expression of resistance to the Vinca alkaloids and the epipodophyllotoxins but not the anthracyclines and overexpression of P-glycoprotein which is post-translationally regulated, but without any concomitant overexpression of P-glycoprotein mRNA.Finally, the possible clinical relevance of these variable patterns of cross-resistance to the antitumour drugs commonly used in the clinic is considered.  相似文献   

10.
Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, "non-genetic" acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers.  相似文献   

11.
Conclusion Considerable progress has been made toward understanding some of the molecular mechanisms underlying MDR in cancer cells in vitro, and sensitive techniques such as immunocytochemistry and RT-PCR indicate that these mechanisms may also play a role in resistance in human cancers. It does seem, however, that there are many different patterns and mechanisms of MDR, not all of which are currently well understood. Identification of chemicals which, at non-toxic doses, circumvent MDR, and of new drugs to which MDR cells are not cross resistant, remains a priority in this area of research. Also, it is important to remember that, although inherent resistance at the molecular level is possibly the most serious barrier to successful chemotherapy, other issues including tumor cell kinetics, drug metabolism, drug penetration within the tumor, and side effects on normal tissues are also critical factors in determining how an individual may respond to chemotherapy.  相似文献   

12.
13.
Multidrug resistance (MDR) mediated by overexpression of the MDR protein (P-glycoprotein) has been associated with intracellular alkalinization, membrane depolarization, and other cellular alterations. However, virtually all MDR cell lines studied in detail have been created via protocols that involve growth on chemotherapeutic drugs, which can alter cells in many ways. Thus it is not clear which phenotypic alterations are explicitly due to MDR protein overexpression alone. To more precisely define the MDR phenotype mediated by hu MDR 1 protein, we co-transfected hu MDR 1 cDNA and a neomycin resistance marker into LR73 Chinese hamster ovary fibroblasts and selected stable G418 (geneticin) resistant transfectants. Several clones expressing different levels of hu MDR 1 protein were isolated. Unlike previous work with hu MDR 1 transfectants, the clones were not further selected with, or maintained on, chemotherapeutic drugs. These clones were analyzed for chemotherapeutic drug resistance, intracellular pH (pHi), membrane electrical potential (Vm), and stability of MDR 1 protein overexpression. LR73/hu MDR 1 clones exhibit elevated pHi and are depolarized, consistent with previous work with LR73/mu MDR 1 transfectants (Luz, J.G. L.Y. Wei, S. Basu, and P.D. Roepe. 1994. Biochemistry. 33:7239-7249). The extent of these perturbations is related to the level of hu MDR 1 protein that is expressed. Cytotoxicity experiments with untransfected LR73 cells with elevated pHi due to manipulating percent CO2 show that the pHi perturbations in the MDR 1 clones can account for much of the measured drug resistance. Membrane depolarization in the absence of MDR protein expression is also found to confer mild drug resistance, and we find that the pHi and Vm changes can conceivably account for the altered drug accumulation measured for representative clones. These data indicate that the MDR phenotype unequivocally mediated by MDR 1 protein overexpression alone can be fully explained by the perturbations in Vm and pHi that accompany this overexpression. In addition, MDR mediated by MDR protein overexpression alone differs significantly from that observed for MDR cell lines expressing similar levels of MDR protein but also exposed to chemotherapeutic drugs.  相似文献   

14.
One of the underlying mechanisms of multidrug resistance (MDR) is cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anti-cancer drugs. P-gp is encoded by a group of related genes termed MDR; only MDR1 is known to confer the drug resistance, and its overexpression in cancer cells has been a therapeutic target to circumvent the resistance. To overcome P-gp-mediated drug resistance, we have developed six anti-MDR1 hammerhead ribozymes and delivered them to P-gp-overproducing human leukemia cell line by a retroviral vector containing RNA polymerase III promoter. These ribozyme-transduced cells became vincristine-sensitive, concomitant with the decreases in MDR1 expression, P-gp amount and efflux pump function. Among the ribozymes tested, the anti-MDR1 ribozyme against the translation-initiation site exhibited the highest efficacy. The retrovirus-mediated transfer of this most potent anti-MDR1 ribozyme into a human lymphoma cell line, which was made resistant by infection of pHaMDR1/A retroviral vector and thus possessed a low degree of MDR due to P-gp expression relevant to clinical MDR, resulted in a complete reversal of MDR phenotype. In addition to retrovirus-mediated transfer of ribozymes, we evaluated the efficacy of cationic liposome-mediated transfer of ribozyme. Treatment of a P-gp-producing human breast cancer cell line with the liposome-ribozyme complex resulted in reversal of resistance, concomitant with the decreases in both MDR1 expression and P-gp amount. Confocal microscopic imaging of the cells after treatment with liposome/FITC-dextran showed cytoplasmic fluorescence that was abolished by cytochalasin B, indicating a high endocytotic activity in these cells. The endocytotic activity was well correlated with the success of cationic liposome-mediated transfer of MDR1 ribozyme. These distinct approaches using either retrovirus- or liposome-mediated transfer of anti-MDR1 ribozyme may be selectively applicable to the treatment of MDR cells with different properties such as endocytotic activity as a specific means to reverse resistance.  相似文献   

15.
Stordal B  Davey M 《IUBMB life》2007,59(11):696-699
Many mechanisms of cisplatin resistance have been proposed from studies of cellular models of resistance including changes in cellular drug accumulation, detoxification of the drug, inhibition of apoptosis and repair of the DNA adducts. A series of resistant models were developed from CCRF-CEM leukaemia cells with increasing doses of cisplatin from 100 ng/ml. This produced increasing resistance up to 7-fold with a treatment dose of 1.6 microg/ml. Cisplatin resistance in these cells correlated with increases in the antioxidant glutathione, yet treatment with buthionine sulphoximine, an inhibitor of glutathione synthesis, had no effect on resistance, suggesting that the increase in glutathione was not directly involved in cisplatin resistance. Two models were developed from H69 SCLC cells, H69-CP and H69CIS200 using 100 ng/ml or 200 ng/ml cisplatin respectively. Both cell models were 2-4 fold resistant to cisplatin, and have decreased expression of p21 which may increase the cell's ability to progress through the cell cycle in the presence of DNA damage. Both the H69-CP and H69CIS200 cells showed no decrease in cellular cisplatin accumulation. However, the H69-CP cells have increased levels of cellular glutathione and are cross resistant to radiation whereas the H69CIS200 cells have neither of these changes. This suggests that increases in glutathione may contribute to cross-resistance to other drugs and radiation, but not directly to cisplatin resistance. There are multiple resistance mechanisms induced by cisplatin treatment, even in the same cell type. How then should cisplatin-resistant cancers be treated? Cisplatin-resistant cell lines are often more sensitive to another chemotherapeutic drug paclitaxel (H69CIS200), or are able to be sensitized to cisplatin with paclitaxel pre-treatment (H69-CP). The understanding of this sensitization by paclitaxel using cell models of cisplatin resistance will lead to improvements in the clinical treatment of cisplatin resistant tumours.  相似文献   

16.
17.
The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells.  相似文献   

18.
Multi drug resistance (MDR) or cross resistance to drugs was initially explained on the basis that MDR cells express drug transporters that expel membrane-embedded drugs. However, it is now clear that transporters are a single piece from a complex puzzle. An issue that has been solved recently is, given that these transporters have to handle drugs, why should a membrane-embedded drug and a transporter meet? To solve this problem, a theory has been suggested considering the interaction between the cell membrane mechanical properties and the size of drugs. In simple terms, this theory proposes that an excess in the packing of lipid in the inner leaflet of the membrane of MDR cells is responsible for blocking drugs mechanically as a function of their sizes at the membrane level, thus impairing their flux into the cytosol. In turn it is expected that this would allow any membrane embedded drug to diffuse toward transporters. The study concluded that the size of drugs is necessarily important regarding the mechanical interaction between the drug and the membrane, and likely to be central to MDR. Remarkably, an experimental study based on MDR and published years ago concluded that the molecular weight (MW) of drugs was central to MDR (Biedler and Riehm in Cancer Res 30:1174–1184, 1970). Given that size and MW are linked together, I have compared the former theory to the latter experimental data and demonstrate that, indeed, basic membrane mechanics is involved in high levels of cross resistance to drugs in Pgp expressing cells.  相似文献   

19.
Changes in intracellular drug localization accompany doxorubicin resistance in multidrug resistant tumor cells. The purpose of this study was to develop a method to quantify these changes and so detect different levels of resistance. Tumor cells were incubated with the fluorescent anthracycline doxorubicin (excitation at 480 nm; emission maximum at 560-590 nm) and were quantified using laser scanning microscopy. The fluorescent mode was used to record the intracellular drug distribution, whereas the absorption mode was used to define the nuclear and cytoplasmic boundaries. The cell compartments were delineated interactively on an image processing system and the ratio nuclear fluorescence/cytoplasmic fluorescence (N/C ratio) was determined. N/C ratios were: 1.8 in the Chinese hamster ovarian cell line AUXB1 and 0.1 in its MDR subline CHRC5; 3.8 in the human squamous lung cancer cell line SW-1573 and 1.8 and 0.4 in its MDR sublines SW-1573/2R120 and SW-1573/2R160, respectively; and 3.6 in the human myeloma cell line 8226/S and 2.1 and 1.0 in its MDR sublines 8226/Dox4 and 8226/Dox40, respectively. The doxorubicin distribution was independent of the doxorubicin concentration within a range from 1-32 microM. Furthermore, the progressive mean of the nuclear/cytoplasmic doxorubicin fluorescence ratio showed that a minimal sample size of 30 cells is necessary for reliable results. The results of two independent assessments showed a high reproducibility (r = 0.97). Thus, with the method described in this paper, it is possible to detect relatively low levels of doxorubicin resistance (factor 8).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号