首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
G. Smith    E. Naylor 《Journal of Zoology》1972,166(3):313-321
The optic ganglia neurosecretory cells of male and female Carcinus maenas during intermoult are distinguishable into six types based on size, location, appearance and method of secretory material release from the perikaryon. Release occurs via the sinus gland and also, in one case, directly into blood capillaries among the neurosecretory cells themselves. The sinus gland consists of axonal extensions of the neurosecretory cells; no secretory granules are produced there and nuclei observed between the axonal endings are those of ill-defined glial cells.  相似文献   

2.
A simple and rapid method is described for the isolation of the acidophilic and basophilic granules from the anterior pituitary gland of the rat. The method involves chromatography of pituitary particulates on columns of No. 545 Celite equilibrated and developed with 0.25 M sucrose. Mitochondria are retained quantitatively on the column. The granules and microsomes which are not retained on the Celite are further fractionated on a discontinuous density sucrose gradient and by differential centrifugation. Essentially homogeneous populations of acidophilic and basophilic granules were obtained as indicated by 1) extensive electron microscopic studies, 2) enzymatic determinations, and 3) fatty acid and RNA analyses on the granule pellets. Microfiltration studies indicated that the acidophilic granules were smaller than 450 mµ, but greater than 300 mµ in diameter. They were found, unlike the basophilic granules, to be partially stable to extraction with water, but were unstable on incubation in 1 mM EDTA at 37°. Magnesium ions were not detected in the granules. The acidophilic and basophilic granules contained, respectively, 5 and 8 per cent of the protein present in the whole homogenate. Extensive hormone studies showed that growth and lactogenic hormones were associated with the acidophilic granules, while thyroid-stimulating hormone and gonadotropin were associated with the basophilic granules. ACTH was not present in significant amounts in either of the granule fractions, but was localized in a particulate fraction which contained microsomes and small granules. The association of the pituitary hormones with specific granules and cell types is discussed.  相似文献   

3.
The mandibular gland of the Djungarian hamster was examined by light microscopy, and transmission and scanning electron microscopies. Its acinar cells reacted with periodic acid-Schiff (PAS) and were weakly stained with alcian blue (AB). There were intercellular canaliculi between the acinar cells. These cells therefore appeared to be seromucous. The acinar epithelium was composed of light cells containing various spherical secretory granules. The granular cells of the mandibular gland possessed many acidophilic granules exhibiting a positive reaction to PAS stain. They were frequently observed at the junction of the acini and intercalated ducts in all mandibular glands examined. All of these cells were light and contained secretory granules of varying size and density. The intercalated ducts consisted exclusively of light cells possessing a few round granules of high density in the apical region. The striated ducts were comprised of two portions--a secretory portion and a typical striated portion without secretory granules. The secretory portion consisted of light, dark and specifically light epithelial cells containing acidophilic granules, which exhibited a strongly positive PAS reaction. The epithelium of typically striated portions was composed of light and dark cells containing fine vacuoles in the apical region. The mandibular gland of the Djungarian hamster revealed no histological differences between sexes.  相似文献   

4.
The inflammatory response induced by the implant of a suture thread in Peripatus acacioi muscle was characterized under light and transmission electron microscopy (TEM). After 24 and 48 h granulocytes were observed migrating through the connective tissue toward the suture thread. These cells contain cytoplasmic eosinophilic granules as well as free granules near to the thread. There were few spherule cells with eccentric smooth kidney-shaped acidophilic nuclei and basophilic granules. Cells with intermediary characteristics as well as cells with a central basophilic nucleus with scarce acidophilic cytoplasm devoid of granules were also found. Under TEM, the granulocytic coelomocytes show small and homogeneous electron dense granules, while the spherule cells possess spherules that can be heterogeneous, granular, or with myelin figures. An acute induced inflammatory process is described for the first time in Onychophora and contributes to the scarce available literature on the function of the coelomocytes within this group.  相似文献   

5.
The mandibular glands of 6 male and 6 female volcano rabbits were examined by means of light and transmission electron microscopy. The acinar cells of the glands were seromucous in nature, and contained faintly basophilic granules. The cells were classified into the light cells containing granules of low or moderate densities and the clear cells having polygonal granules of low density. The preacinar cells were occasionally observed at the site between acinus and intercalated duct. These cells had many weakly basophilic granules which contained fine granular materials of moderate density. The intercalated ducts were composed of light cells containing cored granules. The striated duct cells consisted of light cells and dark cells. Both of them contained a few vacuoles and vesicles, but no secretory granules. No sex-and age-related differences were observed in the mandibular gland of the volcano rabbit. The mandibular gland of the volcano rabbit was similar to the rabbit mandibular gland rather than the pika mandibular gland morphologically.  相似文献   

6.
The parotid gland of Dasyuroides byrnei was examined by light microscopy, and transmission and scanning electron microscopy. The acini were composed predominantly of seromucous cells with a few mucous cells. The seromucous cells were light or dark cells containing acidophilic spherical granules of moderate to high electron density and had well-developed cytoplasmic organelles-ordinary mitochondria and large mitochondria with tubular cristae, RER with vesicular or tubular elements, and Golgi apparatus with lamellae, vesicles and vacuoles. The mucous cells had basophilic amorphous granules of low electron density, like those of ordinary mucous cells. The intercalated ducts were composed of simple cuboidal light cells having a few electron-dense granules. The striated ducts consisted of tall columnar light cells containing numerous vesicles and mitochondria with tubular cristae, the same as found in acinar seromucous cells.  相似文献   

7.
The mandibular glands of Dasyuroides byrnei were examined by light microscopy, and transmission and scanning electron microscopy. The secretory units consisted of numerous seromucous acini and a few seromucous demilunes. The seromucous acini were almost always capped by demilunes. The acinar seromucous cells contained faintly basophilic, light, coarse, bipatite secretory granules with matrix of low and moderate densities. The demilunar cells were dark compared with acinar seromucous cells and contained acidophilic secretory granules with a fibrillogranular matrix of moderate density. Preacinar cells with a seromucous nature were occasionally present at the junction between the acinus and intercalated duct. These cells had numerous basophilic granules, which were similar to those of acinar seromucous cells. The intercalated ducts consisted of simple cuboidal light cells that had a few small electron-dense granules. The striated ducts were composed of tall columnar light cells containing numerous vesicles, but no secretory granules. The mandibular acini of D. byrnei were composed of two cell types having a seromucous nature, unlike those of the opossum and many other mammals.  相似文献   

8.
The ultrastructural study of the secretory cells type 1 and 2 confirmed the separate identities of two secretory cell types in the gut of female B. microplus. Secretory cell type 1 (s1) synthesized and secreted large, spherical, uniformly electrondense granules. Secretory cell type 2 (s2) synthesized smaller, irregularly shaped and more complex granules. Another cell type, the basophilic cell, was shown to be the reorganized basal remnant of secretory cell s2. A few of the basophilic cells retained remnant s2 granules within their cytoplasm. In these cells the reorganized cisternae of rough endoplasmic reticulum were arranged in whorls and parallel arrays. The cells synthesized granules with a different ultrastructure and position in the cell from the earlier granules. The new secretory material may be egg proteins which are released into the haemolymph, and transported to the ovary. Another secretory cell type with smaller spherical granules was seen in the gut caeca of only two female ticks and more evidence is needed to prove its separate identity.  相似文献   

9.
The secretory processes in the shell gland of laying chickens were the subject of this study. Three cell types contribute secretory material to the forming egg: ciliated and non-ciliated columnar cells of the uterine surface epithelium, and cells of tubular glands in the mucosa. The ciliated cells as well as the non-ciliated cells have microvilli, which undergo changes in form and extent during the secretory cycle. At the final stages of shell formation they resemble stereocilia. It is postulated that the microvilli of both cells are active in the production of the cuticle of the shell. The ciliated cell which has both cilia and microvilli manufactures secretory granules which arise from the Golgi complex in varying amounts throughout the egg laying cycle. Granule production reaches its greatest intensity during the early stages of shell deposition. The ciliated cell probably supplies proteinaceous material to the matrix of the forming egg shell. The non-ciliated cell has only microvilli. Secretory granules, containing an acid mucopolysaccharide, arise from the Golgi complex. Some granules are extruded into the uterine lumen where they supply the egg shell with organic matrix. Others migrate towards the supranuclear zone. Here a number of them disintegrate. This is accompanied by the formation of a large membraneless space, which is termed “vacuoloid.” Subsequently the vacuoloid regresses and during regression an extensive rough endoplasmic reticulum with numerous polyribosomes of spiral configuration appears. It is suggested that material in the vacuoloid originating from the disintegrating granules is resynthesized and utilized for the formation of secretory product. The uterine tubular gland cells have irregular, frondlike microvilli. During egg shell deposition, these microvilli form large blebs and are probably related to the elaboration of a watery, calcium-containing fluid.  相似文献   

10.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

11.
Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes.  相似文献   

12.
The granular glands of nine species of dendrobatid frogs were examined using light and electron microscopy. The glands are surrounded by a discontinuous layer of smooth muscle cells. Within the glands proper the secretory cells form a true syncytium. Multiple flattened nuclei lie at the periphery of the gland. The peripheral cytoplasm also contains mitochondria, rough surfaced endoplasmic reticulum, the Golgi apparatus, and an abundance of smooth endoplasmic reticulum. Centrally, most of the gland is filled with membrane-bound granules surrounded by amorphous cytoplasm. Few other organelles are found in this region. Early in the secretory cycle, the central part of the gland is filled with flocculent material which appears to be progressively partitioned off by membranes to form the droplet anlage. As granules form, the structure of the contents becomes progressively more vesicular. Dense vesicles, which bud off from the Golgi apparatus, fuse with the granular membrane during the development of granules, and might contain enzymes involved in toxin synthesis. The granules at this point resemble multivesicular bodies. Their structure is similar in all species of dendrobatid frogs even though the different frogs secrete substances of different chemical structure and toxicity.  相似文献   

13.
The mandibular glands of the Japanese field vole were examined by light microscopy, and transmission and scanning electron microscopies. The acinar cells contained light and coarse secretory granules, and reacted with PAS and stained slightly with AB; they were considered to be seromucous in nature. The acinar epithelium was composed of light and dark cells containing many secretory granules. The intercalated duct cells consisted of light cells possessing a few dense granules. A few cytoplasmic crystalloides of moderate density were observed in occasional light cells. The striated ducts were comprized of two distinct portions, a secretory portion and a typical striated portion without secretory granules. The epithelium secretory portion consisted of light and dark cells containing acidophilic granules and exhibited a sexual dimorphism in these granules: The male epithelia contained the granules of low to high densities, while the female epithelia had only dense granules being smaller than those in the males. The epithelium of typical striated portion was composed of light and dark cells containing fine vacuoles and vesicles.  相似文献   

14.
The general morphology of the mucous gland cell and the nature of the secretory granule in esophageal glands of the newly hatched chick have been described. Lightly basophilic supporting cells, attached to secretory cells by desmosomes and containing tonofilaments, are located on the basal lamina. Electron microscopic studies showed a morphological polarity of the Golgi complex which suggests that mucous precursors are transported from other sites within the cell to the Golgi complex for further packaging into secretory granules. Finally, acid mucopolysaccharides (AMPS) were specifically stained using the Thorotrast technique and not detected in the rough endoplasmic reticulum, the transitional elements, or in the lamellae at the forming face of the Golgi complex. Conversely, AMPS are found in the vicinity of the mature face of the Golgi complex, and in the secretory granules. The acquisition of cytochemical reactivity for AMPS within the Golgi complex is discussed.  相似文献   

15.
瘤背石磺(Onchidium struma)是雌雄同体、异体交配的腹足纲贝类,其生殖系统较为复杂,通过解剖学和组织切片技术对成体瘤背石磺的生殖系统及产卵前后的组织学变化进行了系统的研究.结果表明:(1)雄性生殖系统主要南阴茎囊、阴茎、雄性附性腺、两性腺(早期主要产生精于)和储精囊等部分组成,而雌性生殖系统则由两性腺(后期主要产生卵子)、生殖细胞输送管、蛋白腺、黏液腺、受精囊和阴道等组成;(2)雄性生殖系统的组织学结构在产卵前后变化较小,但两性腺、卵蛋白腺和黏液腺的组织学在产卵前后变化显著;(3)产卵后的两性腺由于成熟卵子的排放,整体结构松散,部分腺泡中有少量未排出的成熟卵细胞和卵黄合成早期的卵母细胞;(4)产卵前的卵蛋白腺中含有许多强嗜碱性的小颗粒(组织学结构类似于卵鞘中的胚胎外周蛋白),产卵后腺体中的颗粒相对较大,且呈嗜酸性;(5)产卵前的黏液腺中存在嗜碱性区、嗜酸性区和混杂区三种区域,但是产卵前黏液腺以嗜酸性细胞为主,而产卵后的黏液腺中以嗜碱性细胞区域为主,且分泌管道中有一些嗜碱性物质.由此可见,卵蛋白腺的主要功能是分泌卵蛋白包裹受精卵形成卵外周蛋白层,而黏液腺则在产卵过程中分泌黏液物质形成卵鞘结构及链状的卵带.  相似文献   

16.
The female reproductive system of Eupolybothrus fasciatus (Newport) (Chilopoda Lithobiomorpha) includes three types of well-developed accessory glands, viz. large glands, small glands, and the periatrial gland. External morphology and the ultrastructural organization of these glands have been investigated by light and electron microscopy. The small and large glands are paired and have coiled ducts that open, respectively, into and externally to the genital atrium. By contrast, the periatrial gland is unpaired and is located on the ventral wall of the atrium into which it opens via several small canals. Ultrastructural features show that all three glands consist of two different types of cells: secretory cells and ductule cells. The secretary cells contain prominent secretory granules and are similar to a class of insect epidermal gland cells (class 3) organized as acini surrounding an extracellular lumen into which microvilli project. The granules, which have different morphological features in each gland, could be responsible for important differential functions such as producing a sexual attractant, providing a coating material that protects eggs laid on the ground, and contributing to a fluid that digests spermatophores. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
The coagulating gland of male rodents is part of the prostatic complex. Various mechanisms of secretion have been postulated, in part because organelles commonly involved in the secretory process possess unusual features, such as extreme distension of the rough endoplasmic reticulum. In the present study, the pathway, kinetics, and mode of secretion in the coagulating gland of the mouse were studied by electron microscope autoradiography at intervals between 5 min and 8 h after administration of 3H-threonine. The percentage of grains associated with the rough endoplasmic reticulum was initially high and generally decreased throughout the experiment, while a pronounced rise in the proportion of grains associated with the Golgi apparatus and secretory granules was observed 6 h after injection of precursor. In addition, there was a smaller elevation in the percentage of grains over the Golgi apparatus and secretory granules between 1 and 4 h, and radioactive material first reached the lumen of the gland 4 h after injection of the precursor. Although the general pathway of intracellular transport of secretory protein resembles that in other cells, the results indicate that there are several unusual aspects to the secretory process in the coagulating gland. First, the rate of transport was markedly slower than in most other exocrine gland cells, since the bulk of the labeled protein did not reach the Golgi apparatus and secretory granules until 6 h after administration of precursor. This reflected prolonged retention of secretory products in the endoplasmic reticulum. Second, in addition to the major bolus of labeled material that traversed the cells at about 6 h, a smaller wave of radioactivity appeared to pass through the Golgi apparatus and secretory granules and reach the lumen earlier, within the first few hours after the injection. Finally, the primary mode of secretion in the coagulating gland appears to be merocrine because the secretory granules contained much labeled protein.  相似文献   

19.
Junoy, J., Montalvo, S., Roldán, C. and García‐Corrales, P. 2000. Ultrastructural study of the bacillary, granular and mucoid proboscidial gland cells of Riseriellus occultus (Nemertini, Heteronemertini). — Acta Zoologica (Stockholm) 81 : 235–242. The ultrastructure of six types (G5‐G10) of proboscidial gland cells whose cell necks emerge independently on the epithelium surface is analysed and compared with data from other nemerteans. These types differ in cytological features, as well as in the morphology of their respective secretory granules. Secretory granules of the types G5 and G6 have a bacillary shape, and differ from each other based on their contents and dimensions. Secretory granules of the types G7 and G8 are spherical to ovoid; type G8 gland cells are monociliated, and their secretory granules contain a paracrystalline material. Types G9 and G10 gland cells are typically goblet‐shaped; secretory granules in the type G9 have a spherical shape, contain a homogeneous electron dense material and maintain their individuality, whereas those of the G10 type are elongate and have fibrillar contents, showing a tendency to fuse before they are extruded. The mucus sheet of the proboscis is responsible for lubrication of its epithelial surface. Secretion products of type G10 gland cells form the background substance of this mucus, and those of the G5 type confer stickiness to it. Type G9 gland cells could provide the toxic component to the mucus, and type G7 and G8 gland cells could be concerned with the production of enzymatic secretions.  相似文献   

20.
Purba Pal 《Acta zoologica》2007,88(2):145-152
Within the clade Euthyneura the marine basommatophorans are particularly neglected. More morphological and molecular studies are needed because their phylogenetic relationships with other pulmonates remain unresolved. The present study examines the most conspicuous reproductive gland, the glandular complex in two marine limpets, Siphonaria capensis and S. serrata (Pulmonata: Basommatophora) at both gross and fine structural levels. These two sympatric species with different developmental modes were selected to compare the structure and function of this enormous glandular structure. In both S. capensis and S. serrata, the glandular complex shows an undifferentiated state composed of an acidophilic albumen gland and a basophilic mucous gland. The glands contain secretory cells and supporting cells (= ciliated cells) that are highly ciliated. When the histochemical properties of the glandular complex were compared with those of siphonariid egg masses (of each species) it could be established that the albumen gland was responsible for the production of perivitelline fluid whereas the mucous gland secreted substances that help in the assembly of mucous layers surrounding the egg capsules. We suggest that the presence of a single glandular complex comprised of two glands is the most primitive organization of reproductive glands in pulmonates. Furthermore, the histology, fine structure and histochemistry of these glands are very similar to those of the reproductive glands of opisthobranchs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号