首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified, homologous spectrin, inner component of red blood cell (RBC) membrane, injected intraperitoneally in rats determines the appearance in the serum of precipitating autoantibodies against spectrin. These have been purified and characterized according to their classes and anti spectrin activity. Immunochemical and immunocytochemical tests, including immunoelectronmicroscopy (colloidal gold method) have been employed. They belong principally to IgG1 and IgG2a subclasses and react in electro-immunodiffusion and ELISA tests with purified spectrin showing a more elevated level of antibodies than that of control rats (normal and adjuvant treated). They also mark in immunoelectronmicroscopy assays purified RBC membranes. The ease in inducing precipitating anti spectrin autoantibodies, as resulted in many experiments, and the appearance, also in control rats, of anti spectrin antibodies, even if at a very low level, suggest they rise as consequence of an enhancement of a "natural" immunological system normally operating at low and controlled degree, presumably intervening in the elimination of effete or damaged RBCs.  相似文献   

2.
Sertoli cells prepared from rats ages 15 and 25 days were shown to contain a spectrin-like protein. Indirect immunofluorescence with monospecific antimouse erythrocyte immunoglobulin G (IgG) and with monospecific antimouse brain spectrin IgG revealed specific staining in Sertoli cells. Both antibodies precipitated two spectrin-like peptides of 240,000 and 235,000 daltons from cells solubilized with octyl glucoside. Proteins from Sertoli cell membranes were separated by electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate and electrophoretically transferred to nitrocellulose membrane. Incubation of nitrocellulose membrane with either of the two antibodies, followed by horseradish peroxidase conjugated to second antibody, revealed only the larger, or alpha, spectrin subunit (Western blots). Both antibodies were used to provide immunoautoradiographic identification of the spectrin-like protein. In this procedure, spectrin and Sertoli cell membranes were shown to compete with [125I]-labeled spectrin from mouse erythrocytes for binding to antimouse erythrocyte spectrin IgG. Finally, two-dimensional proteolytic mapping of the 240,000- and 235,000-dalton peptides demonstrated limited spot homology with rat erythrocyte spectrin. However, subcellular fractions from Sertoli cells all contained a spectrin-like protein showing high homology from fraction to fraction. It is concluded that Sertoli cells contain a spectrin-like protein that is seen in cell fractions prepared by centrifugation, i.e., mitochondria, microsomes, nuclei, cytoplasm, and plasma membranes. Although homology with spectrin from erythrocytes or brain is not seen in peptide maps, the alpha subunit shares antigenic determinants with spectrin from erythrocytes. The beta subunit is believed to be precipitated by antispectrin as the result of binding to the alpha subunit, since the beta subunit shows no detectable antigenic homology with that of spectrin.  相似文献   

3.
Erythrocyte spectrin, isolated by aqueous extraction of erythrocyte ghosts, may be freed from contaminating membrane lipids and small amounts of other proteins by gel chromatography in 5 or 10 mM deoxycholate. The purified protein, in deoxycholate, is a mixture of monomers and dimers, both highly asymmetric molecules. The hydrodynamic properties of the dimer closely resemble those of muscle myosin, and spectrin and myosin also have similar circular dichroism spectra. The proportion of dimer to monomer in the purified protein varies from one preparation to another, an observation for which there is no simple explanation. In the absence of deoxycholate, spectrin associated beyond the dimer stage, possibly by loose end-to-end aggregation involving hydrophobic forces.  相似文献   

4.
Dystrophin, a component of the muscle membrane cytoskeleton, is the protein altered in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Dystrophin shares significant homology with other cytoskeletal proteins, such as α-actinin and spectrin. On the basis of its sequence similarity with α-actinin and spectrin, dystrophin has been proposed to function as dimer. However, the existence of both dimers and monomers have been observed by electron microscopy. To address this apparent discrepancy, we expressed dystrophin fragments composed of different domains in an in vitro translation system. The expressed fragments were tested for their ability to interact with each other and full-length dystrophin by both immunoprecipitation and blot overlay assays. These assays were successfully used to demonstrate the dimerization of α-actinin and spectrin, yet failed to detect any interaction between dystrophin fragments. Although these in vitro results do not prove that dystrophin is not a dimer in vivo, they do indicate that this interaction is not like that of the α-actinin and spectrin.  相似文献   

5.
Aggregated states of spectrin from bovine erythrocyte membranes can be detected in sedimentation velocity experiments. These aggregates have been isolated by means of gel filtration on columns of 4% agarose. They appear to be stable over a wide range of pH and ionic strength, although they are dissociated by sodium dodecyl sulphate. Sedimentation equilibrium measurements yielded values of 960 000 and 480 000 for the molecular weights of the major aggregates, corresponding to a tetramer and dimer, respectively. The presence of different aggregated states in spectrin preparations may explain the wide variation in the reported physical properties of spectrin.  相似文献   

6.
The membrane skeleton plays a central role in maintaining the elasticity and stability of the erythrocyte membrane, two biophysical features critical for optimal functioning and survival of red cells. Many constituent proteins of the membrane skeleton are phosphorylated by various kinases, and phosphorylation of β-spectrin by casein kinase and of protein 4.1R by PKC has been documented to modulate erythrocyte membrane mechanical stability. In this study, we show that activation of endogenous PKA by cAMP decreases membrane mechanical stability and that this effect is mediated primarily by phosphorylation of dematin. Co-sedimentation assay showed that dematin facilitated interaction between spectrin and F-actin, and phosphorylation of dematin by PKA markedly diminished this activity. Quartz crystal microbalance measurement revealed that purified dematin specifically bound the tail region of the spectrin dimer in a saturable manner with a submicromolar affinity. Pulldown assay using recombinant spectrin fragments showed that dematin, but not phospho-dematin, bound to the tail region of the spectrin dimer. These findings imply that dematin contributes to the maintenance of erythrocyte membrane mechanical stability by facilitating spectrin-actin interaction and that phosphorylation of dematin by PKA can modulate these effects. In this study, we have uncovered a novel functional role for dematin in regulating erythrocyte membrane function.  相似文献   

7.
A 103-kDa protein present in membrane cytoskeletal preparations from bovine brain has been identified. We have purified this protein to greater than 95% homogeneity using gel filtration and ion-exchange chromatography. This protein, p103, is an asymmetric dimer in dilute solution and has two major variants that can be distinguished by isoelectric focussing, pI 5.60 and 5.75. Using subcellular fractionation, it is most enriched in postsynaptic densities. Immunolocalization with anti-p103-specific antibodies reveals that it is confined to the dendrites and perikarya; it is apparently absent from spinal cord axons. It coextracts from brain membrane-skeletal preparations with brain spectrin and actin, but in vitro, it does not interact with them.  相似文献   

8.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

9.
Proteins involved in a structural transition detected in red blood cell membranes at 40 degrees C by spin labeling methods have been investigated. Antibodies specific for spectrin, band 3, and protein 4.1 have been used as specific probes to modify membrane thermotropic properties. Spectrin seems to be involved in a 40 degrees C transition detected in ghosts by both a stearic acid spin label (16-doxyl stearic) and a sulfhydryl-specific maleimide analogue spin label. Circular dichroism and maleimide spin labeling studies of purified spectrin show a slow unfolding of the protein structure starting at 25-30 degrees C and a massive transition with an onset temperature of 48 and 40 degrees C, respectively. This thermotropic behavior of spectrin could be the process that modifies membrane physicochemical properties above 40 degrees C that are detected by the stearic acid spin label. The transition detected by the stearic acid spin label was modified both by antispectrin antibodies and anti-4.1 protein antibodies, but not by antibodies specific for the cytoplasmic domain of band 3. These results suggest an involvement of protein 4.1 in regulating spectrin unfolding at the membrane level. A selective inhibition of the transition detected by the maleimide spin label has been obtained with a monoclonal antispectrin antibody at 1:1 molar ratio. The involvement in this transition of a localized spectrin domain(s) containing few exposed sulfhydryl groups is proposed.  相似文献   

10.
The binding of the isolated alpha-subunit of human erythrocyte spectrin to calmodulin is demonstrated by partitioning in aqueous two-phase systems. The affinity of the alpha-subunit for calmodulin is slightly higher than that of the spectrin dimer, whereas the beta-subunit interacts only very weakly. The binding is in all cases calcium-dependent and is abolished on addition of chlorpromazine. At an ionic strength close to physiological conditions, about 1 microM free calcium is required to induce maximum binding of calmodulin to spectrin dimer.  相似文献   

11.
The rotational diffusion of erythrocyte spectrin has been measured using time-resolved phosphorescence anisotropy. The anisotropy of the spectrin dimer decays to zero with a time constant of 3 microseconds at 21 degrees C. The results are compared with the correlation times predicted for the anisotropy decay of an equivalent sphere and rigid rod. The data indicate that the ribbon-like spectrin molecule possesses considerable torsional and segmental flexibility. These motions are restricted, but not abolished, when spectrin is reconstituted into cross-linked cytoskeletal protein networks, or bound to spectrin-actin depleted erythrocyte membrane vesicles.  相似文献   

12.
The fragment of smooth muscle alpha-actinin, comprising the four spectrin-like structural repeating units, has a high alpha-helix content, similar to that of spectrin, and a hydrodynamic frictional coefficient, indicative of an elongated, probably bent or kinked rod-like structure, as found for spectrin dimer and tetramer. The fragment exists in solution as an extremely stable dimer, which is dissociated only under denaturing conditions and is much more resistant to dissociation by urea than is the spectrin heterodimer. High-resolution proton magnetic resonance spectra reveal that a part of the polypeptide chain gives rise to sharp resonances; this is also true of spectrin and it implies that the individual structural repeating units contain segmentally mobile elements, which may be required to generate the elastic properties of the spectrin family of proteins. Again like spectrin, the alpha-actinin fragment contains multiple binding sites for long-chain fatty acids, as revealed by quenching of tryptophan fluorescence by 2-bromostearate (though not by 9(10)-bromostearate). The results point to extensive structural and functional similarities between the repeating units of all the proteins of the spectrin family.  相似文献   

13.
Spectrin in isolated erythrocyte membranes is known to undergo tetramer to dimer transformation upon hypotonic incubation at 37 degrees C. In the present study, we detect no such transformation in intact erythrocytes in which hypotonicity is achieved by valinomycin treatment followed by hypotonic swelling. The inhibition of spectrin tetramer to dimer transformation is attributable to intracellular hemoglobin, since the addition of hemoglobin to isolated membranes or spectrin extracts blocks a similar spectrin transformation. However, the inhibitory effect is not limited to hemoglobin; other proteins including heme-containing proteins and basic proteins such as cytochrome c, ribonuclease, and albumin are also effective. The magnitude of their effect is proportional to the increased pI value of these proteins. We conclude that the stabilizing effect of these proteins on spectrin tetramers under hypotonic conditions is partly due to their non-ideality, which excludes water from spectrin and thus increases the effective concentration of spectrin, and to their electrostatic interactions with spectrin. In addition, promotion of spectrin self-association by hemoglobin under hypotonic conditions increases the stability of membrane skeletons against mechanical shearing. More importantly, the hemoglobin effect on spectrin self-association is demonstrable at physiological hemoglobin concentration, pH, and osmolarity, suggesting that in intact red cells the spectrin dimer-dimer association, as well as the membrane skeletal structure, is strengthened by intracellular hemoglobin.  相似文献   

14.
Hans U. Lutz 《FEBS letters》1984,169(2):323-329
In contrast to the properties of spectrin obtained from [32P]phosphate-labeled red cells, purified spectrin dimer could be phosphorylated by a cAMP-dependent protein kinase from bovine heart. Both spectrin bands were phosphorylated. Spectrin band 2 contained in addition to autophosphorylated peptides several phosphopeptides that were distinct from autophosphorylated ones. The cAMP-dependent phosphorylation of spectrin band 1 was modulated by reducing agent and the concentration of spectrin. At high concentrations spectrin band 2 was predominantly labeled. The cAMP-dependent phosphoform of spectrin band 2 had a pI slightly higher than that of autophosphorylated spectrin band 2, but lower than that of ankyrin.  相似文献   

15.
Human erythrocyte ghosts have been shown, by scanning electron microscopy, to undergo ATP-dependent shape changes. Under appropriate conditions the ghosts prepared from normal disk-shaped intact cells adopt a highly crenated shape, which in the presence of Mg-ATP at 37 degrees C is slowly converted to the disk shape and eventually to the cup shape. These changes are not observed with other nucleotides or with 5'-adenylyl imidodiphosphate. Anti-spectrin antibodies, incorporated along with the Mg-ATP into the ghosts in amounts less than equivalent to the spectrin, markedly accelerate the shape changes observed with the Mg-ATP alone. The Fab fragments of these antibodies, however, have no effect. The conclusion is that the structural effect produced by the ATP is promoted by the cross-linking of spectrin by its antibodies, and may therefore itself be some kind of polymerization or network formation involving the spectrin complex on the cytoplasmic face of the membrane. The factors that contribute to the shape of the ghost and of the intact erythrocyte are discussed in the light of these findings.  相似文献   

16.
D Elbaum  L T Mimms  D Branton 《Biochemistry》1984,23(20):4813-4816
The effect of human erythrocyte spectrin dimer and band 4.1 on the polymerization of actin was studied by two independent methods: by following the increase in fluorescence of actin covalently conjugated to N-pyrenyl-iodoacetamide (pyrenylactin) and by following the increase in light scattered by actin polymers. Both techniques indicated that the complex of spectrin dimer and band 4.1, but neither spectrin nor band 4.1 alone, stimulates the rate of nucleation (decreases the lag phase of polymerization) and stabilizes oligomers of F-actin. While the band 4.1-spectrin complex, but not spectrin alone, had no immediate effect on the rate of polymerization after the lag phase, it eventually decreases the rate of actin filament growth when the molecular ratio of actin-spectrin-band 4.1 approaches the physiological range. The complex has no detectable effect on the critical actin concentration and does not significantly alter the apparent order of the nucleation reaction.  相似文献   

17.
Plasmodium falciparum dramatically modifies the structure and function of the membrane of the parasitized host erythrocyte. Altered membrane properties are the consequence of the interaction of a group of exported malaria proteins with host cell membrane proteins. KAHRP (the knob-associated histidine-rich protein), a member of this group, has been shown to interact with erythrocyte membrane skeletal protein spectrin. However, the molecular basis for this interaction has yet to be defined. In the present study, we defined the binding motifs in both KAHRP and spectrin and identified a functional role for this interaction. We showed that spectrin bound to a 72-amino-acid KAHRP fragment (residues 370-441). Among nine-spectrin fragments, which encompass the entire alpha and beta spectrin molecules (four alpha spectrin and five beta spectrin fragments), KAHRP bound only to one, the alpha N-5 fragment. The KAHRP-binding site within the alpha N-5 fragment was localized uniquely to repeat 4. The interaction of full-length spectrin dimer to KAHRP was inhibited by repeat 4 of alpha spectrin. Importantly, resealing of this repeat peptide into erythrocytes mislocalized KAHRP in the parasitized cells. We concluded that the interaction of KAHRP with spectrin is critical for appropriate membrane localization of KAHRP in parasitized erythrocytes. As the presence of KAHRP at the erythrocyte membrane is necessary for cytoadherence in vivo, our findings have implications for the development of new therapies for mitigating the severity of malaria infection.  相似文献   

18.
Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain alpha-spectrin and human erythroid beta-spectrin repeats can undergo bending without losing their alpha-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain alpha-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, the three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of alpha-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and alpha-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.  相似文献   

19.
Immunochemical detection of actin as well as spectrin-like proteins have been carried out in the green algae Micrasterias denticulata, Closterium lunula, and Euastrum oblongum. In these algae, actin is detected on Western blots at 43 kDa with antibodies to actin from higher plant and animal origin. By use of antibodies to human and chicken erythrocyte spectrin a cross-reactivity with desmid proteins is found at about the molecular mass of 220 kDa, where also human erythrocyte spectrin is detected. Additional bands are present at 120 kDa and 70 kDa, which are probably breakdown products. An antibody against chicken alpha-actinin, a small protein of the spectrin superfamily, recognizes bands at 90 kDa, where it is expected, and 70 kDa, probably the same breakdown product as mentioned for spectrin. Isoelectric focusing provides staining at pI 4.6 with antibodies against spectrin. Immunogold labelling of spectrin and alpha-actinin antigens on high-pressure frozen, freeze-substituted Micrasterias denticulata cells with the same antibodies exhibits staining, especially at membranes of different populations of secretory vesicles, at dictyosomes, and the plasma membrane. However, no clear correlation to the growth pattern of the cell could be observed. Taken together, our results demonstrate the presence of spectrin-like proteins in desmid cells which are probably functional in exocytosis.  相似文献   

20.
C M Cohen  S F Foley 《Biochemistry》1984,23(25):6091-6098
Ternary complex formation between the major human erythrocyte membrane skeletal proteins spectrin, protein 4.1, and actin was quantified by measuring cosedimentation of spectrin and band 4.1 with F-actin. Complex formation was dependent upon the concentration of spectrin and band 4.1, each of which promoted the binding of the other to F-actin. Simultaneous measurement of the concentrations of spectrin and band 4.1 in the sedimentable complex showed that a single molecule of band 4.1 was sufficient to promote the binding of a spectrin dimer to F-actin. However, the molar ratio of band 4.1/spectrin in the complex was not fixed, ranging from approximately 0.6 to 2.2 as the relative concentration of added spectrin to band 4.1 was decreased. A mole ratio of 0.6 band 4.1/spectrin suggests that a single molecule of band 4.1 can promote the binding of more than one spectrin dimer to an actin filament. Saturation binding studies showed that in the presence of band 4.1 every actin monomer in a filament could bind at least one molecule of spectrin, yielding ternary complexes with spectrin/actin mole ratios as high as 1.4. Electron microscopy of such complexes showed them to consist of actin filaments heavily decorated with spectrin dimers. Ternary complex formation was not affected by alteration in Mg2+ or Ca2+ concentration but was markedly inhibited by KCl above 100 mM and nearly abolished by 10 mM 2,3-diphosphoglycerate or 10 mM adenosine 5'-triphosphate. Our data are used to refine the molecular model of the red cell membrane skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号