首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B Sherry  X Y Li  K L Tyler  J M Cullen    H W Virgin  th 《Journal of virology》1993,67(10):6119-6124
Many studies suggest that host lymphocytes are damaging, rather than protective, in virally induced myocarditis. We have investigated the role of lymphocyte-based immunity in murine myocarditis by using a myocarditic reovirus (reovirus serotype 3 8B), nonmyocarditic reoviruses, adoptive transfer experiments, and mice with severe combined immunodeficiency (SCID mice). Prior to infection, passive transfer of monoclonal antibodies specific for 8B capsid proteins protected neonatal mice against 8B-induced myocarditis, indicating that humoral immunity can protect against myocarditis. Some monoclonal antibodies acted by blocking viral spread to and/or replication in the heart. Passive transfer of reovirus-immune, but not naive, spleen cells prior to infection protected neonatal mice from 8B-induced myocarditis. Depletion of either CD4 or CD8 T cells resulted in increased viral titer in the heart but did not abrogate immune cell-mediated protection against myocardial injury. This shows that both CD4 and CD8 T cells can act independently to protect myocardial tissue from reovirus infection. In addition, reovirus 8B caused extensive myocarditis in SCID mice. This confirms a prior report (B. Sherry, F. J. Schoen, E. Wenske, and B. N. Fields, J. Virol. 63:4840-4849, 1989) that T cells are not required for reovirus-induced myocarditis and demonstrates for the first time that B cells are not required for reovirus-induced myocarditis. We used SCID mice and a panel of reoviruses to assess (i) the relationship between growth in the heart and myocardial damage and (ii) the possibility that nonmyocarditic reoviruses exhibit a myocarditic phenotype in the absence of functional lymphocytes. Growth in the heart was not the sole determinant of myocarditic potential in SCID mice. Although 8B induced myocarditis in SCID mice, no or minimal myocarditis was found in SCID mice infected with four reovirus strains previously shown (B. Sherry and B. N. Fields, J. Virol. 63:4850-4856, 1989) to be nonmyocarditic or poorly myocarditic in normal neonatal mice. We conclude that (i) humoral immunity and cellular immunity are protective against, and not required for, reovirus-induced myocarditis and (ii) the potential to induce cardiac damage is a property of the virus independent of lymphocyte-based immunity.  相似文献   

2.
Reoviruses contain a genome composed of 10 double-stranded RNA gene segments. A reovirus reassortant, 8B, derived from type 1 Lang (T1L) and type 3 Dearing (T3D), displayed a phenotype unlike that of either of its parents in that it efficiently induced numerous macroscopic external cardiac lesions in neonatal mice (B. Sherry, F. J. Schoen, E. Wenske, and B. N. Fields, J. Virol. 63:4840-4849, 1989). A panel of T1L/T3D reassortants and a panel of reassortants derived from 8B were used to determine whether novel T1L/T3D gene associations in 8B were responsible for its myocarditic phenotype. The results eliminated the possibility that any T1L/T3D gene combination found in 8B, from 2 genes to all 10 genes, was the explanation for its induction of cardiac lesions. This suggested that a mutation(s) in an 8B gene(s) might be responsible for induction of the myocarditis. Statistical analysis of experiments with 31 reassortants derived from 8B revealed a highly significant association (P = 0.002) of the 8B M1 gene with induction of cardiac lesions. The reovirus M1 gene encodes a viral core protein of unknown function, although evidence suggests a potential role in core structure and/or viral RNA synthesis. This represents the first report of the association of a viral gene with induction of myocarditis.  相似文献   

3.
Myocarditis is indicated as the second leading cause of sudden death in young adults. Reovirus induces myocarditis in neonatal mice, providing a tractable model system for investigation of this important disease. Alpha/beta-interferon (IFN-α/β) treatment improves cardiac function and inhibits viral replication in patients with chronic myocarditis, and the host IFN-α/β response is a determinant of reovirus strain-specific differences in induction of myocarditis. Virus-induced IFN-β stimulates a signaling cascade that establishes an antiviral state and further induces IFN-α/β through an amplification loop. Reovirus strain-specific differences in induction of and sensitivity to IFN-α/β are associated with the viral M1, L2, and S2 genes. The reovirus M1 gene-encoded μ2 protein is a strain-specific repressor of IFN-β signaling, providing one possible mechanism for the variation in resistance to IFN and induction of myocarditis between different reovirus strains. We report here that μ2 amino acid 208 determines repression of IFN-β signaling and modulates reovirus induction of IFN-β in cardiac myocytes. Moreover, μ2 amino acid 208 determines reovirus replication, both in initially infected cardiac myocytes and after viral spread, by regulating the IFN-β response. Amino acid 208 of μ2 also influences the cytopathic effect in cardiac myocytes after spread. Finally, μ2 amino acid 208 modulates myocarditis in neonatal mice. Thus, repression of IFN-β signaling mediated by reovirus μ2 amino acid 208 is a determinant of the IFN-β response, viral replication and damage in cardiac myocytes, and myocarditis. These results demonstrate that a single amino acid difference between viruses can dictate virus strain-specific differences in suppression of the host IFN-β response and, consequently, damage to the heart.  相似文献   

4.
Viral myocarditis is an important cause of human morbidity and mortality for which reliable and effective therapy is lacking. Using reovirus strain 8B infection of neonatal mice, a well-characterized experimental model of direct virus-induced myocarditis, we now demonstrate that myocardial injury results from apoptosis. Proteases play a critical role as effectors of apoptosis. The activity of the cysteine protease calpain increases in reovirus-infected myocardiocytes and can be inhibited by the dipeptide alpha-ketoamide calpain inhibitor Z-Leu-aminobutyric acid-CONH(CH(2))3-morpholine (CX295). Treatment of reovirus-infected neonatal mice with CX295 protects them against reovirus myocarditis as documented by (i) a dramatic reduction in histopathologic evidence of myocardial injury, (ii) complete inhibition of apoptotic myocardial cell death as identified by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, (iii) a reduction in serum creatine phosphokinase, and (iv) improved weight gain. These findings are the first evidence for the importance of a calpain-associated pathway of apoptotic cell death in viral disease. Inhibition of apoptotic signaling pathways may be an effective strategy for the treatment of viral disease in general and viral myocarditis in particular.  相似文献   

5.
To determine critical role of cyclooxygenase-2 (COX-2) for development of viral myocarditis, a mouse model of encephalomyocarditis virus-induced myocarditis was used. The virus was intraperitoneally given to COX-2 gene-deficient heterozygote mice (COX-2+/-) and wild-type mice (WT). We examined differences in heart weights, cardiac histological scores, numbers of infiltrating or apoptotic cells in myocardium, cardiac expression levels of COX-2, tumor necrosis factor-alpha (TNF-alpha), and adiponectin mRNA, immunoreactivity of COX-2, TNF-alpha, and adiponectin in myocytes, cardiac concentrations of TNF-alpha and adiponectin, prostaglandin E2 (PGE2) levels in hearts, and viral titers in tissues between COX-2+/- and WT. We observed significantly decreased expression of COX-2 mRNA and reactivity in hearts from COX-2+/- on day 8 after viral inoculation as compared with that from WT, together with elevated cardiac weights and severe inflammatory myocardial damage in COX-2+/-. Cardiac expression of TNF-alpha mRNA, reactivity, and protein on day 8 was significantly higher in COX-2+/- than in WT, together with reciprocal expression of adiponectin mRNA, reactivity, and protein in hearts. Significantly reduced cardiac PGE2 levels on day 8 were found in COX-2+/- compared with those in WT. There was no difference in local viral titers between both groups on day 4. Infected WT treated with a selective COX-2 inhibitor, NS-398, also showed the augmented myocardial damage on day 8. These results suggest that inhibition of COX-2 may enhance myocardial damage through reciprocal cardiac expression of TNF-alpha and adiponectin in a mouse model of viral myocarditis.  相似文献   

6.
Shen Y  Xu W  Chu YW  Wang Y  Liu QS  Xiong SD 《Journal of virology》2004,78(22):12548-12556
Coxsackievirus group B type 3 (CVB3) is an important cause of viral myocarditis. The infiltration of mononuclear cells into the myocardial tissue is one of the key events in viral myocarditis. Immediately after CVB3 infects the heart, the expression of chemokine(s) by infected myocardial cells may be the first trigger for inflammatory infiltration and immune response. However, it is unknown whether CVB3 can induce the chemokine expression in cardiac myocytes. Monocyte chemoattractant protein 1 (MCP-1) is a potent chemokine that stimulates the migration of mononuclear cells. The objective of the present study was to investigate the effect of CVB3 infection on MCP-1 expression in murine cardiac myocytes and the role of MCP-1 in migration of mononuclear cells in viral myocarditis. Our results showed that the expression of MCP-1 was significantly increased in cardiac myocytes after wild-type CVB3 infection in a time- and dose-dependent manner, which resulted in enhanced migration of mononuclear cells in mice with viral myocarditis. The migration of mononuclear cells was partially abolished by antibodies specific for MCP-1 in vivo and in vitro. Administration of anti-MCP-1 antibody prevented infiltration of mononuclear cells bearing the MCP-1 receptor CCR2 in mice with viral myocarditis. Infection by UV-irradiated CVB3 induced rapid and transient expression of MCP-1 in cardiac myocytes. In conclusion, our results indicate that CVB3 infection stimulates the expression of MCP-1 in myocardial cells, which subsequently leads to migration of mononuclear cells in viral myocarditis.  相似文献   

7.
B Sherry  C J Baty    M A Blum 《Journal of virology》1996,70(10):6709-6715
The capacity for different reovirus reassortant viruses to induce acute myocarditis in mice correlates with cytopathogenic effect in primary cultures of murine cardiac myocytes. Multiple viral genes encoding proteins involved in viral RNA synthesis are determinants of this disease. We therefore evaluated the role of viral RNA synthesis in induction of acute myocarditis by infecting primary cultures of cardiac myocytes with a panel of myocarditic and nonmyocarditic viruses and quantitating RNA synthesis. RNA synthesis correlated with induction of myocarditis and with the S1 and M1 reovirus genes. Since one consequence of viral RNA synthesis is generation of infectious virus, we looked next at viral yield from cardiac myocyte cultures. Yield of infectious virus at an early time postinfection or as a final yield from primary infections did not correlate with myocarditis, but instead both correlated with the S1 gene. The S1 gene also determined the fraction of cells infected during primary infections in the culture, which varied dramatically between viruses. Viral yields per infected cell were similar for most myocarditic and nonmyocarditic reoviruses and did not correlate with induction of myocarditis or any reovirus gene. Together, the data provide two insights into reovirus-induced acute myocarditis in mice. First, while the S1 gene. which encodes the viral attachment protein sigma1 (as well as a nonstructural protein, sigma1s, of unknown function) does not determine the myocarditic potential of these viruses, it does determine the efficiency with which they infect cardiac myocytes. Second, while viral RNA synthesis is a determinant of acute myocarditis, this is not due to generation of infectious virus. This finding suggests that some other consequence of viral RNA synthesis, for example, induction of interferon, may determine reovirus-induced acute myocarditis.  相似文献   

8.
B Sherry  M A Blum 《Journal of virology》1994,68(12):8461-8465
Previously, we showed that the M1 gene (encoding a viral core protein, mu 2, whose function is unknown) was associated with the efficiently myocarditic phenotype of a reovirus variant, 8B. Here, we have extended our genetic analysis of 8B and conducted genetic analyses of two other reovirus strains (T1L [serotype 1 strain Lang] and Abney). Our results demonstrate that multiple viral core proteins are determinants of reovirus-induced myocarditis. In contrast to our previous association of mu 2 with induction of myocarditis, this provides strong evidence that a core function achieved through the interaction of multiple core proteins is responsible for induction of the disease.  相似文献   

9.
We used reovirus reassortant genetics and severe combined immunodeficient (SCID) mice to define viral genes important for organ tropism and virulence in the absence of antigen-specific immunity. Adult SCID mice infected with reovirus serotype 1 strain Lang (T1L) died after 20 +/- 6 days, while infection with serotype 3 strain Dearing (T3D) was lethal after 77 +/- 22 days. One hundred forty-five adult SCID mice were infected with T1L, T3D, and 25 different T1L x T3D reassortant reoviruses, and gene segments associated with the increased virulence of T1L were identified. Gene segments S1, L2, M1, and L1 accounted for > 90% of the genetically determined increase in T1L virulence. Gene segment M1 was independently important for virulence, with S1, L2, and L1 alone or in combination also playing a role. T1L grew to higher titers in multiple organs and caused more severe hepatitis than T3D. Seventy adult SCID mice, T1L, T3D, and 15 T1L x T3D reassortant viruses were used to map genetic determinants of viral titers in the brain, intestines, and liver, as well as the severity of hepatitis. Different sets of gene segments were important for determining viral titers in different organs. Gene segments L1 (encoding a core protein) and L2 (encoding the core spike of the virion) were important in all of the organs analyzed. The M1 gene segment (encoding a core protein), but not the S1 gene segment, was a critical determinant of reovirus titer in the liver and severity of hepatitis. The S1 gene segment (encoding the viral cell attachment protein and a nonstructural protein), but not the M1 gene segment, was a critical determinant of titers in intestines and brains. These studies demonstrate that viral growth in different organs is dependent on different subsets of the genes important for virulence. The virion-associated protein products of the four gene segments (L1, L2, M1, and S1) important for virulence and organ tropism in SCID mice likely form a structural unit, the reovirus vertex. Organs (the brain and intestines versus the liver) differ in properties that determine which virulence genes, and thus which parts of this structural unit, are important.  相似文献   

10.
To investigate the role of leptin in the development of viral myocarditis and cardiac necrosis, we used a murine model of viral myocarditis. We intraperitoneally injected encephalomyocarditis virus (500 plaque-forming units/mouse) for wild type C57 BL/6 mice (WT) and leptin-deficient ob/ob mice (OB) (n = 20 for each). Ten-day survival rate was 25% in OB, whereas it was 95% in WT. Heart weights on day 10 were significantly elevated in OB compared with those in WT (107.2 +/- 9.4 vs. 96.6 +/- 7.9 mg, n = 4 for each). Thymus weights were significantly diminished in OB compared with those in WT on days 6 and 10. Histological score (grade 1 to 4 according to the size of involved area) for myocardial necrosis were significantly higher in OB than in WT (1.5 +/- 0.5 vs. 0.8 +/- 0.5, n = 4 for each). On day 4, viral titer in hearts was significantly elevated in OB compared with that in WT (3.3 +/- 0.5 vs. 1.9 +/- 0.2 TCID50/mg, n = 3 for each). Comparative expression of TNF-alpha mRNA in hearts from OB were significantly increased compared with those in WT on day 7 (n = 3 for each). Natural killer cell activities in spleens from OB were significantly lower than from WT on day 4 (27 +/- 5 vs. 42 +/- 8%, n = 4 for each). Thus, leptin deficiency could enhance severity of myocardial necrosis and mortality due to viral myocarditis.  相似文献   

11.
Reovirus-induced acute myocarditis in mice serves as a model to investigate non-immune-mediated mechanisms of viral myocarditis. We have used primary cardiac myocyte cultures infected with a large panel of myocarditic and nonmyocarditic reassortant reoviruses to identify determinants of viral myocarditic potential. Here, we report that while both myocarditic and nonmyocarditic reoviruses kill cardiac myocytes, viral myocarditic potential correlates with viral spread through cardiac myocyte cultures and with cumulative cell death. To address the role of secreted interferon (IFN), we added anti-IFN-α/β antibody to infected cardiac myocyte cultures. Antibody benefited nonmyocarditic more than myocarditic virus spread (P < 0.001), and this benefit was associated with the reovirus M1 and L2 genes. There was no benefit for a differentiated skeletal muscle cell line culture (C2C12 cells), suggesting cell type specificity. IFN-β induction in reovirus-infected cardiac myocyte cultures correlated with viral myocarditic potential (P = 0.006) and was associated with the reovirus M1, S2, and L2 genes. Sensitivity to the antiviral effects of IFN-α/β added to cardiac myocyte cultures also correlated with viral myocarditic potential (P = 0.004) and was associated with the same reovirus genes. Several reoviruses induced IFN-β levels discordant with their myocarditic phenotypes, and for those tested, sensitivity to IFN-α/β compensated for the anomalous induction levels. Thus, the combination of induction of and sensitivity to IFN-α/β is a determinant of reovirus myocarditic potential. Finally, a nonmyocarditic reovirus induced cardiac lesions in mice depleted of IFN-α/β, demonstrating that IFN-α/β is a determinant of reovirus-induced myocarditis. This provides the first identification of reovirus genes associated with IFN induction and sensitivity and provides the first evidence that IFN-β can be a determinant of viral myocarditis and reovirus disease.  相似文献   

12.
Male Balb/c mice inoculated with a heart-adapted variant of Coxsackievirus, group B, type 3 (CVB3) develop severe myocarditis 7 days later. The lesions are characterized by mononuclear cell inflammation and myocyte necrosis. Infected T-lymphocyte-deficient mice show either minimal or no cardiac injury, although virus concentrations in the hearts of T-cell-deficient and -sufficient animals are similar. Adoptive transfer of 2 X 10(6) CVB3 immune Thy 1+ cells into CVB3-infected T-cell-deficient mice effectively restored myocarditis to levels observed in intact animals. Similar reconstitution with immune Ig+ cells or serum resulted in only a minimal increase in cardiac injury. To determine whether T-lymphocyte-dependent humoral or cellular immunity was responsible for myocarditis. T lymphocytes were obtained from Balb/c mice 6 days after infection with CVB3, separated into Lyt 1+2- (helper) and Lyt 1-2+ (cytolytic/suppressor) cell populations, and 2 X 10(6) of the enriched helper and cytolytic cells were adoptively transfused into infected T-cell-deficient recipients. Animals receiving the immune Lyt2+ cells developed severe myocarditis, had cytolytic T lymphocytes to both CVB3-infected and uninfected myocytes, but lacked a detectable IgG antibody response. Recipients of the Lyt 1+ cells failed to develop either myocarditis or cytolytic T cells but had normal serum IgG antibody titers to the virus. These results demonstrate that cardiac myocarditis is the product of cellular immune mechanisms.  相似文献   

13.
H W Virgin  th  K L Tyler 《Journal of virology》1991,65(10):5157-5164
We studied the role of T cells in resistance to reovirus intestinal and central nervous system infection. Transfer of reovirus-immune adult spleen cells protected neonatal mice from (i) lethal infection with reovirus serotype 3 Dearing (T3D, footpad inoculation) and serotype 3 clone 9 (T3C9, oral inoculation) and (ii) hydrocephalus caused by serotype 1 Lang (T1L, intracranial [i.c.] inoculation). Cell-mediated protection was not serotype specific. While immune cells protected against T1L i.c., they failed to protect against 1/5,000 of the dose of T3D i.c. Two types of experiments showed that both CD4 and CD8 T cells are involved in reovirus resistance. First, immune cell-mediated protection against T3D was abrogated by in vivo treatment with anti-CD4 monoclonal antibody (MAb) and significantly inhibited by in vivo treatment with anti-CD8 MAb. Second, T3C9-infected neonatal mice treated with anti-CD4 and/or anti-CD8 developed a novel disease phenotype, an oily hair syndrome, associated with severe hepatobiliary pathology and increased viral titer in heart and liver. Immune cells and an MAb to the cell attachment protein sigma 1 (MAb G5) protected by different mechanisms. Immune cells were more effective than sigma 1 MAb G5 at controlling primary replication, while sigma 1 MAb G5 was more effective than immune cells at inhibiting neural spread of virus. We conclude that both CD4 and CD8 T cells are important for reovirus resistance, that cells and antibody act preferentially at different stages in pathogenesis in vivo, and that adoptively transferred immune cells can protect both the central nervous system and intestine.  相似文献   

14.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   

15.
Huber S  Shi C  Budd RC 《Journal of virology》2002,76(13):6487-6494
Fas/Fas ligand (FasL) interactions regulate disease outcome in coxsackievirus B3 (CVB3)-induced myocarditis. MRL(+/+) mice infected with CVB3 develop severe myocarditis, a dominant CD4(+) Th1 (gamma interferon [IFN-gamma(+)]) response to the virus, and a predominance of gammadelta T cells in the myocardial infiltrates. MRL lpr/lpr and MRL gld/gld mice, which lack normal expression of Fas and express a mutated FasL, respectively, have minimal myocarditis and show a dominant CD4(+) Th2 (interleukin-4 [IL-4(+)]) phenotype to CVB3. Spleen cells from virus-infected wild-type, lpr, and gld animals proliferate equally to virus in vitro. Adoptive transfer of gammadelta T cells from hearts of CVB3-infected MRL(+/+) mice (FasL(+)) into infected MRL gld/gld recipients (FasL(-)/Fas(+)) restores both disease susceptibility and Th1 cell phenotype. However, transfer of these cells into MRL lpr/lpr recipients (FasL(+)/Fas(-)) did not promote myocarditis and the viral response remained Th2 biased. This paralleled the expression of very high surface levels of FasL by myocardial gammadelta T cells, as well as their propensity to selectively lyse Th2 virus-specific CD4(+) T cells. These results demonstrate that Fas/FasL interactions conferred by gammadelta T cells on lymphocyte subpopulations may regulate the cytokine response to CVB3 infection and pathogenicity.  相似文献   

16.
Th1-type immune responses, mediated by IL-12-induced IFN-gamma, protect the host from most viral infections. To investigate the role of IL-12 and IFN-gamma on the development of Coxsackievirus B3 (CB3)-induced myocarditis, we examined the level of inflammation, viral replication, and cytokine production in IL-12Rbeta1- and IFN-gamma-deficient mice following CB3 infection. We report that IL-12Rbeta1 deficiency results in decreased viral replication and inflammation in the heart, while IFN-gamma deficiency exacerbates CB3 replication. Importantly, decreased IL-1beta and IL-18 levels in IL-12Rbeta1-deficient hearts correlated directly with decreased myocardial inflammation. Because IL-1beta and IL-18 were associated with myocardial inflammation, we examined the effect of TLR4 deficiency on CB3 infection and myocarditis. We found that TLR4-deficient mice also had significantly reduced levels of myocarditis, viral replication, and IL-1beta/IL-18, just as we had observed in IL-12Rbeta1-deficient mice. This is the first report that TLR4 influences CB3 replication. These results show that IL-12Rbeta1 and TLR4 exacerbate CB3 infection and myocarditis while IFN-gamma protects against viral replication. The remarkable similarities between the effects of IL-12Rbeta1 and TLR4 suggest that these receptors share common downstream pathways that directly influence IL-1beta and IL-18 production, and confirm that IL-1beta and IL-18 play a significant role in the pathogenesis of CB3-induced myocarditis. These findings have important implications not only for the pathogenesis of myocarditis, but for other autoimmune diseases triggered by viral infections.  相似文献   

17.
18.
The myocarditic (H3) variant of Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice and BALB/c mice lacking the invariant J alpha 281 gene, but minimal disease in BALB/c CD1d(-/-) animals. This indicates that CD1d expression is important in this disease but does not involve the invariant NKT cell often associated with CD1d-restricted immunity. The H3 variant of the virus increases CD1d expression in vitro in neonatal cardiac myocytes whereas a nonmyocarditic (H310A1) variant does not. V gamma 4(+) T cells show increased activation in both H3-infected BALB/c and J alpha 281(-/-) mice compared with CD1d(-/-) animals. The activated BALB/c V gamma 4(+) T cells from H3-infected mice kill H3-infected BALB/c myocytes and cytotoxicity is blocked with anti-CD1d but not with anti-MHC class I (K(d)/D(d)) or class II (IA/IE) mAbs. In contrast, H3 virus-infected CD1d(-/-) myocytes are not killed. These studies demonstrate that CD1d expression is essential for pathogenicity of CVB3-induced myocarditis, that CD1d expression is increased early after infection in vivo in CD1d(+) mice infected with the myocarditic but not with the nonmyocarditic CVB3 variant, and that V gamma 4(+) T cells, which are known to promote myocarditis susceptibility, appear to recognize CD1d expressed by CVB3-infected myocytes.  相似文献   

19.
Mutants of mammalian reoviruses, enteric double-stranded-RNA-containing viruses that spread systemically after primary replication in intestinal tissue, have been extensively studied as models of viral pathogenesis. While reovirus serotype 3 strain Dearing (T3D) causes acute encephalitis in newborn mice, adult severe combined immunodeficient (SCID) mice develop chronic infection with T3D, with some mice living more than 100 days after infection (B. L. Haller, M. L. Barkon, G. P. Vogler, and H. W. Virgin IV, J. Virol. 69:357-364, 1995). To determine whether organ-specific reovirus variants are selected during chronic infection, we characterized the pathogenetic properties of two variants of T3D isolated 87 days after intraperitoneal infection of adult SCID mice. A brain-specific variant (T3DvBr) (i) grew to a higher titer than T3D in SCID mouse brain (but not intestine) after intraperitoneal inoculation, (ii) killed adult SCID mice faster than T3D, and (iii) grew well in neonatal NIH Swiss [NIH(s)] mouse brain tissue after intramuscular but not peroral inoculation. An intestine-specific variant (T3DvInt) (i) grew to a higher titer than T3D in SCID mouse intestine (but not brain) after intraperitoneal inoculation, (ii) killed SCID mice with kinetics equivalent to those of T3D, (iii) was much less virulent than T3D in neonatal NIH(s) mice, (iv) grew better than T3D in intestines after intramuscular or peroral inoculation into neonatal NIH(s) mice, and (v) grew poorly in brain tissue of neonatal NIH(s) mice after intramuscular inoculation. During prolonged infection of SCID mice, organ-specific variants of T3D, which are more efficient than wild-type T3D at one specific stage in reovirus pathogenesis, are selected.  相似文献   

20.
Zurney J  Howard KE  Sherry B 《Journal of virology》2007,81(24):13668-13680
Viral myocarditis is an important human disease, and reovirus-induced murine myocarditis provides an excellent model system for study. Cardiac myocytes, like neurons in the central nervous system, are not replenished, yet there is no cardiac protective equivalent to the blood-brain barrier. Thus, cardiac myocytes may have evolved a unique antiviral response relative to readily replenished cell types, such as cardiac fibroblasts. Our previous comparisons of these two cell types revealed a conundrum: reovirus T3D induces more beta-interferon (IFN-β) mRNA in cardiac myocytes, yet there is a greater induction of IFN-stimulated genes (ISGs) in cardiac fibroblasts. Here, we investigated possible underlying molecular determinants. We found that greater basal expression of IFN-β in cardiac myocytes results in greater basal activated nuclear STAT1 and STAT2 and greater basal ISG mRNA expression and provides greater basal antiviral protection relative to cardiac fibroblasts. Conversely, cardiac fibroblasts express greater basal IFN-α/β receptor 1 (IFNAR1) and greater basal cytoplasmic Jak1, Tyk2, STAT2, and IRF9, leading to a greater increase in reovirus T3D- or IFN-induced nuclear activated STAT1 and STAT2 and greater induction of ISGs for a greater IFN-induced antiviral protection relative to cardiac myocytes. Our results suggest that high basal IFN-β expression in cardiac myocytes prearms this vulnerable, nonreplenishable cell type, while high basal expression of IFNAR1 and latent Jak-STAT components in adjacent cardiac fibroblasts renders these cells more responsive to IFN and prevents them from inadvertently serving as a reservoir for viral replication and spread to cardiac myocytes. These studies provide the first indication of an integrated network of cell-type-specific innate immune components for organ protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号