首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Serum transferrin (sTf) carries iron in blood serum and delivers it into cells by receptor-mediated endocytosis. The protein can also bind other metals, including aluminum. The crystal structures of the metal-free and metal-loaded protein indicate that the metal release process involves an opening of the protein. In this process, Lys206 and Lys296 lying in the proximity of each other form the dilysine pair or, so-called, dilysine trigger. It was suggested that the conformational change takes place due to variations of the protonation state of the dilysine trigger at the acidic endosomal pH. In 2003, Rinaldo and Field (Biophys. J. 85, 3485-3501) proposed that the dilysine trigger alone can not explain the opening and that the protonation of Tyr188 is required to prompt the conformational change. However, no evidence was supplied to support this hypothesis. Here, we present several 60 ns molecular dynamics simulations considering various protonation states to investigate the complexes formed by sTf with Fe(III) and Al(III). The calculations demonstrate that only in those systems where Tyr188 has been protonated does the protein undergo the conformational change and that the dilysine trigger alone does not lead to the opening. The simulations also indicate that the metal release process is a stepwise mechanism, where the hinge-bending motion is followed by the hinge-twisting step. Therefore, the study demonstrates for the first time that the protonation of Tyr188 is required for the release of metal from the metal loaded sTf and provides valuable information about the whole process.  相似文献   

3.
The unique structural feature of the dilysine (Lys206-Lys296) pair in the transferrin N-lobe (hTF/2N) has been postulated to serve a special function in the release of iron from the protein. These two lysines, which are located in opposite domains, hydrogen bond to each other in the iron-containing hTF/2N at neutral pH but are far apart in the apo-form of the protein. It has been proposed that charge repulsion resulting from the protonation of the dilysines at lower pH may be the trigger to open the cleft and facilitate iron release. The fact that the dilysine pair is positively charged and resides in a location close to the metal-binding center has also led to the suggestion that the dilysine pair is an anion-binding site for chelators. The present report provides comprehensive evidence to confirm that the dilysine pair plays this dual role in modulating release of iron. When either of the lysines is mutated to glutamate or glutamine or when both are mutated to glutamate, release of iron is much slower compared to the wild-type protein. This is due to the fact that the driving force for cleft opening is absent in the mutants or is converted to a lock-like interaction (in the case of the K206E and K296E mutants). Direct titration of the apo-proteins with anions as well as anion-dependent iron release studies show that the dilysine pair is part of an active anion-binding site which exists with the Lys296-Tyr188 interaction as a core. At this site, Lys296 serves as the primary anion-binding residue and Tyr188 is the main reporter for electronic spectral change, with smaller contributions from Lys206, Tyr85, and Tyr95. In iron-loaded hTF/2N, anion binding becomes invisible as monitored by UV-vis difference spectra since the spectral reporters Tyr188 and Tyr95 are bound to iron. Our data strongly support the hypothesis that the apo-hTF/2N exists in equilibrium between the open and closed conformations, because only in the closed form is Lys296 in direct contact with Tyr188. The current findings bring together observations, ideas, and experimental data from a large number of previous studies and shed further light on the detailed mechanism of iron release from the transferrin N-lobe. In iron-containing hTF/2N, Lys296 may still function as a target to introduce an anion (or a chelator) near to the iron-binding center. When the pH is lowered, the protonation of carbonate (synergistic anion for metal binding) and then the dilysine pair form the driving force to loosen the cleft, exposing iron; the nearby anion (or chelator) then binds to the iron and releases it from the protein.  相似文献   

4.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl(3), the content of bound Fe(III) can be increased from a natural concentration of approximately 180 ppm to a saturation limit of approximately 80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH-dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)-saturated melanin sample without affecting the amount of Fe(III) pre-adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o-dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer-Emmett-Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

5.
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.  相似文献   

6.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl3, the content of bound Fe(III) can be increased from a natural concentration of ~180 ppm to a saturation limit of ~80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH‐dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)‐saturated melanin sample without affecting the amount of Fe(III) pre‐adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o‐dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer–Emmett–Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

7.
Production of the soluble portion of the transferrin receptor (sTFR) by baby hamster kidney (BHK) cells is described, and the effect of glycosylation on the biological function of sTFR is evaluated for the first time. The sTFR (residues 121-760) has three N-linked glycosylation sites (Asn251, Asn317, and Asn727). Although fully glycosylated sTFR is secreted into the tissue culture medium ( approximately 40 mg/L), no nonglycosylated sTFR could be produced, suggesting that carbohydrate is critical to the folding, stability, and/or secretion of the receptor. Mutants in which glycosylation at positions 251 and 727 (N251D and N727D) is eliminated are well expressed, whereas production of the N317D mutant is poor. Analysis by electrospray ionization mass spectrometry confirms dimerization of the sTFR and the absence of the carbohydrate at the single site in each mutant. The effect of glycosylation on binding to diferric human transferrin (Fe(2) hTF), an authentic monoferric hTF with iron in the C-lobe (designated Fe(C) hTF), and a mutant (designated Mut-Fe(C) hTF that features a 30-fold slower iron release rate) was determined by surface plasmon resonance; a small ( approximately 20%) but consistent difference is noted for the binding of Fe(C) hTF and the Mut-Fe(C) hTF to the sTFR N317D mutant. The rate of iron release from Fe(C) hTF and Mut-Fe(C) hTF in complex with the sTFR and the sTFR mutants at pH 5.6 reveals that only the N317D mutant has a significant effect. The carbohydrate at position 317 lies close to a region of the TFR previously shown to interact with hTF.  相似文献   

8.
9.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

10.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

11.
Exchange of iron by gallium in siderophores   总被引:2,自引:0,他引:2  
T Emery 《Biochemistry》1986,25(16):4629-4633
Siderophores are iron transport compounds produced by numerous microorganisms and which strongly chelate Fe(III), but not Fe(II). Other trivalent metals, such as Al(III), Cr(III), or Ga(III), are not capable of significantly displacing iron from siderophores. However, I demonstrate here that Ga(III) can effectively displace iron under reducing conditions. With ascorbate as reductant and ferrozine as Fe(II) trapping agent, the kinetics of reductive displacement of iron by Ga(III) were followed spectroscopically by the increase of absorbance at 562 nm due to formation of the Fe(II)-ferrozine complex. No significant reduction of siderophore occurred in the absence of Ga(III). With excess Ga(III), the displacement was quantitative and very rapid. The rate of metal exchange was pseudo first order with respect to Ga(III) concentration and highly pH dependent, suggesting that siderophore ligands are displaced from the iron in a concerted mechanism by Ga(III) and protonation to expose the Fe(III) to reduction by ascorbate. Reaction rates were dependent upon the structure of the siderophore, being greatest for ferric rhodotorulic acid and slowest for ferrichrome A at pH 5.4. The pH profile for ferric rhodotorulic acid was unusual in that it showed a maximum at pH 6.5, while all other siderophores examined showed an increase in rate as pH was lowered from 7.0. The physiological significance of this reaction to the clinical use of gallium is discussed.  相似文献   

12.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

13.
Serum transferrin (sTf) transports iron in serum and internalizes in cells via receptor mediated endocytosis. Additionally, sTf has been identified as the predominant aluminum carrier in serum. Some questions remain unclear about the exact mechanism for the metal release or whether the aluminum and iron show the same binding mode during the entire process. In the present work, simulation techniques at quantum and atomic levels have been employed in order to gain access into a molecular level understanding of the metal-bound sTf complex, and to describe the binding of Al(III) and Fe(III) ions to sTf. First, hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were carried out in order to analyze the dynamics of the aluminum-loaded complex, taking into account the different pH conditions in blood and into the cell. Moreover, the complexes formed by transferrin with Al(III) and Fe(III) were optimized with high level density functional theory (DFT)/MM methods. All these results indicate that the interaction mode of Al(III) and Fe(III) with sTf change upon different pH conditions, and that the coordination of Al(III) and Fe(III) is not equivalent during the metal intake, transport and release processes. Our results emphasize the importance of the pH on the metal binding and release mechanism and suggest that Al(III) can follow the iron pathway to get access into cells, although once there, it may show a different binding mode, leading to a different mechanism for its release.  相似文献   

14.
Reticulocyte binding of Fe(III)_-transferrin and transferrin complexes with other metal ions have been compared by different investigators. The functional relevance of this comparison is not clear, therefore transferrin complexes with Fe(III), Cu(II), Mn(II) and Zn(II) have been studied further by DEAE-cellulose chromatography and by measurement of transferrin and metal uptakes by rabbit reticulocytes.Human Fe-transferrin behaved as a weaker anion than apotransferrin during DEAE-cellulose chromatography; since Fe-transferrin has a higher negative charge than apotransferrin and behaves a as stronger anion in electrophoretic systems, the chromatographic result was the opposite of that anticipated. The lower affinity of human Fe-transferrin for DEAE-cellulose is probably caused by a redistribution of charged groups on the surface of transferrin molecules when Fe(III) ions are bound and is therefore considered to be dependent on molecular conformation. Apotransferrin and divalent metal-transferrin complexes were found to have nearly equal affinities for DEAE-cellulose, thus the effect on surface charge of human transferrin molecules induced by binding Fe(III) appeared to be limited to that metal ion.Iron uptake by reticulocytes was associated with increased binding of transferrin to the cell surface: uptake of divalent metals occured without a concomitant increase in transferrin uptake or evidence of a specific metal-transfer process. Cu-transferrin was rapidly dissociated during incubation with cells.The effect of Fe(III)_binding on human transferrin molecules was to alter the molecular affinity for charged surfaces, namely DEAE-cellulose and reticulocyte membranes. This was less apparent with rabbit transferrin. Transferrin complexes with divalent metals behaved as apotransferrin in the process of association with reticulocytes.  相似文献   

15.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

16.
Escherichia coli apomanganese superoxide dismutase, prepared by removing the native metal ion under denaturing conditions, exhibits thermally triggered metal uptake behavior previously observed for thermophilic and hyperthermophilic superoxide dismutases but over a lower temperature range. Differential scanning calorimetry of aposuperoxide dismutase and metalated superoxide dismutase unfolding transitions has provided quantitative estimates of the metal binding affinities for manganese superoxide dismutase. The binding constant for Mn(II) (K(Mn(II)) = 3.2 x 10(8) m(-1)) is surprisingly low in light of the essentially irreversible metal binding characteristic of this family of proteins and indicates that metal binding and release processes are dominated by kinetic, rather than thermodynamic, constraints. The kinetic stability of the metalloprotein complex can be traced to stabilization by elements of the protein that are independent of the presence or absence of the metal ion reflected in the thermally triggered metalation characteristic of these proteins. Binding constants for Mn(III), Fe(II), and Fe(III) complexes were estimated using quasireversible values for the unfolding enthalpy and DeltaC(p) for apo-Mn superoxide dismutase and the observed T(m) values for unfolding the metalated species in the absence of denaturants. For manganese and iron complexes, an oxidation state-dependent binding affinity reflects the protein perturbation of the metal redox potential.  相似文献   

17.
18.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

19.
Nitric oxide (NO) release from nitric oxide synthases (NOSs) is largely dependent on the dissociation of an enzyme ferric heme-NO product complex (Fe(III)NO). Although the NOS-like protein from Bacillus subtilis (bsNOS) generates Fe(III)NO from the reaction intermediate N-hydroxy-l-arginine (NOHA), its NO dissociation is about 20-fold slower than in mammalian NOSs. Crystal structures suggest that a conserved Val to Ile switch near the heme pocket of bsNOS might determine its kinetic profile. To test this we generated complementary mutations in the mouse inducible NOS oxygenase domain (iNOSoxy, V346I) and in bsNOS (I224V) and characterized the kinetics and extent of their NO synthesis from NOHA and their NO-binding kinetics. The mutations did not greatly alter binding of Arg, (6R)-tetrahydrobiopterin, or alter the electronic properties of the heme or various heme-ligand complexes. Stopped-flow spectroscopy was used to study heme transitions during single turnover NOHA reactions. I224V bsNOS displayed three heme transitions involving four species as typically occurs in wild-type NOS, the beginning ferrous enzyme, a ferrous-dioxy (Fe(II)O(2)) intermediate, Fe(III)NO, and an ending ferric enzyme. The rate of each transition was increased relative to wild-type bsNOS, with Fe(III)NO dissociation being 3.6 times faster. In V346I iNOSoxy we consecutively observed the beginning ferrous, Fe(II)O(2), a mixture of Fe(III)NO and ferric heme species, and ending ferric enzyme. The rate of each transition was decreased relative to wild-type iNOSoxy, with the Fe(III)NO dissociation being 3 times slower. An independent measure of NO binding kinetics confirmed that V346I iNOSoxy has slower NO binding and dissociation than wild-type. Citrulline production by both mutants was only slightly lower than wild-type enzymes, indicating good coupling. Our data suggest that a greater shielding of the heme pocket caused by the Val/Ile switch slows down NO synthesis and NO release in NOS, and thus identifies a structural basis for regulating these kinetic variables.  相似文献   

20.
Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号