共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Tin Kyaw Peng Cui Christopher Tay Peter Kanellakis Hamid Hosseini Edgar Liu Antonius G. Rolink Peter Tipping Alex Bobik Ban-Hock Toh 《PloS one》2013,8(4)
Aims
Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse.Methods and Results
To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93− CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93− CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment.Conclusion
Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases. 相似文献3.
Yan-Wei Hu Peng Zhang Jun-Yao Yang Jin-Lan Huang Xin Ma Shu-Fen Li Jia-Yi Zhao Ya-Rong Hu Yan-Chao Wang Ji-Juan Gao Yan-Hua Sha Lei Zheng Qian Wang 《PloS one》2014,9(1)
Rationale
It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism.Objective
Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high cholesterol diet.Methods and Results
The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE−/− mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation.Conclusion
These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis. 相似文献4.
Kai Meng Qiutang Zeng Qinghua Lu Yingzhong Lin Bangwei Wu Kunwu Yu Zhaoqiang Dong Jianwei Zhang Meng Chai Yuyang Liu Qingwei Ji Yujie Zhou 《Molecular medicine (Cambridge, Mass.)》2015,21(1):143-153
Valsartan has a protective effect against hypertension and atherosclerosis in humans and experimental animal models. This study aimed to determine the effect of prolonged treatment with angiotensin II (Ang II) on atherosclerosis and the effect of valsartan on the activity of CD4+ T lymphocyte subsets. The results showed that prolonged treatment (8 wks) with exogenous Ang II resulted in an increased atherosclerotic plaque size and a switch of stable-to-unstable plaque via modulating on CD4+ T lymphocyte activity, including an increase in the T helper cell type 1 (Th1) and Th17 cells and a decrease in Th2 and regulatory T (Treg) cells. In contrast, valsartan treatment efficiently reversed the imbalance in CD4+ T lymphocyte activity, ameliorated atherosclerosis and elicited a stable plaque phenotype in addition to controlling blood pressure. In addition, treatment with anti-interleukin (IL)-5 monoclonal antibodies weakened the antiatherosclerotic effects of valsartan without affecting blood pressure. 相似文献
5.
6.
Maria Shirely Herbas Mototada Shichiri Noriko Ishida Aiko Kume Yoshihisa Hagihara Yasukazu Yoshida Hiroshi Suzuki 《PloS one》2015,10(8)
The emergence of malaria pathogens having resistance against antimalarials implies the necessity for the development of new drugs. Recently, we have demonstrated a resistance against malaria infection of α-tocopherol transfer protein knockout mice showing undetectable plasma levels of α-tocopherol, a lipid-soluble antioxidant. However, dietary restriction induced α-tocopherol deficiency is difficult to be applied as a clinical antimalarial therapy. Here, we report on a new strategy to potentially treat malaria by using probucol, a drug that can reduce the plasma α-tocopherol concentration. Probucol pre-treatment for 2 weeks and treatment throughout the infection rescued from death of mice infected with Plasmodium yoelii XL-17 or P. berghei ANKA. In addition, survival was extended when the treatment started immediately after parasite inoculation. The ratio of lipid peroxidation products to parent lipids increased in plasma after 2 weeks treatment of probucol. This indicates that the protective effect of probucol might be mediated by the oxidative stressful environment induced by α-tocopherol deficiency. Probucol in combination with dihydroartemisin suppressed the proliferation of P. yoelii XL-17. These results indicated that probucol might be a candidate for a drug against malaria infection by inducing α-tocopherol deficiency without dietary α-tocopherol restriction. 相似文献
7.
Sofie Ahlin Maja Olsson Anna S. Wilhelmson Kristina Sk?lén Jan Borén Lena M. S. Carlsson Per-Arne Svensson Kajsa Sj?holm 《PloS one》2014,9(4)
Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However, whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/− transgenic mice (hSAA1 mice) with a specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured. Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis development in mice. 相似文献
8.
Jakub Toczek Alexis Broisat Pascale Perret Marie-Dominique Desruet Daniel Fagret Laurent M. Riou Catherine Ghezzi 《PloS one》2014,9(7)
Background
[18F]-fluorodeoxyglucose (FDG) has been suggested for the clinical and experimental imaging of inflammatory atherosclerotic lesions. Significant FDG uptake in brown adipose tissue (BAT) has been observed both in humans and mice. The objective of the present study was to investigate the influence of periaortic BAT on apolipoprotein E-deficient (apoE−/−) mouse atherosclerotic lesion imaging with FDG.Methods
ApoE−/− mice (36±2 weeks-old) were injected with FDG (12±2 MBq). Control animals (Group A, n = 7) were injected conscious and kept awake at room temperature (24°C) throughout the accumulation period. In order to minimize tracer activity in periaortic BAT, Group B (n = 7) and C (n = 6) animals were injected under anaesthesia at 37°C and Group C animals were additionally pre-treated with propranolol. PET/CT acquisitions were performed prior to animal euthanasia and ex vivo analysis of FDG biodistribution.Results
Autoradiographic imaging indicated higher FDG uptake in atherosclerotic lesions than in the normal aortic wall (all groups, P<0.05) and the blood (all groups, P<0.01) which correlated with macrophage infiltration (R = 0.47; P<0.001). However, periaortic BAT uptake was either significantly higher (Group A, P<0.05) or similar (Group B and C, P = NS) to that observed in atherosclerotic lesions and was shown to correlate with in vivo quantified aortic FDG activity.Conclusion
Periaortic BAT FDG uptake was identified as a confounding factor while using FDG for the non-invasive imaging of mouse atherosclerotic lesions. 相似文献9.
Ricardo A. García Debra J. Search John A. Lupisella Jacek Ostrowski Bo Guan Jian Chen Wen-Pin Yang Amy Truong Aiqing He Rongan Zhang Mujing Yan Samuel E. Hellings Peter S. Gargalovic Carol S. Ryan Linda M. Watson Robert A. Langish Petia A. Shipkova Nancy L. Carson Joseph R. Taylor Richard Yang George C. Psaltis Thomas W. Harrity Jeffrey A. Robl David A. Gordon 《PloS one》2013,8(2)
10.
Xiaoquan Rao Jixin Zhong Xiaohua Xu Brianna Jordan Santosh Maurya Zachary Braunstein Tse-Yao Wang Wei Huang Sudha Aggarwal Muthu Periasamy Sanjay Rajagopalan Kamal Mehta Qinghua Sun 《PloS one》2013,8(12)
Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD)-fed mice. PKCβ-/- and wild-type mice were fed a HFD with or without exercise training. PKC protein expression, body and tissue weight change, glucose and insulin tolerance, metabolic rate, mitochondria size and number, adipose inflammation, and AKT activation were determined to evaluate insulin sensitivity and metabolic changes after intervention. PKCβ expression decreased in both skeletal muscle and liver tissue after exercise. Exercise and PKCβ deficiency can alleviate HFD-induced insulin resistance, as evidenced by improved insulin tolerance. In addition, fat accumulation and mitochondrial dysfunction induced by HFD were also ameliorated by both exercise and PKCβ deficiency. On the other hand, exercise had little effect on PKCβ-/- mice. Further, our data indicated improved activation of AKT, the downstream signal molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ deficiency blunted the difference between sedentary and exercised mice. These results suggest that downregulation of PKCβ contributes to exercise-induced improvement of insulin resistance in HFD-fed mice. 相似文献
11.
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1−/− mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1−/− mice. 相似文献
12.
L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1−/−) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1−/− animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1−/− at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1−/− mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals. 相似文献
13.
Toya Terry Zhiqiang Chen Richard A. F. Dixon Peter Vanderslice Pierre Zoldhelyi James T. Willerson Qi Liu 《PloS one》2011,6(6)
Background
Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34+/M-cad+ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34+/M-cad+ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD.Methods and Findings
Colony-forming cell assays and flow cytometry analysis showed that CD34+/M-cad+ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE−/− mice, CD34+/M-cad+ BMCs alleviated ischemia and significantly improved blood flow compared with CD34+/M-cad− BMCs, CD34−/M-cad+ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34+/M-cad+ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP+ CD34+/M-cad+ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP+ CD34+/M-cad+ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34+/M-cad+ progenitor cells. A cytokine antibody array revealed that CD34+/M-cad+ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34+/M-cad− cell-conditioned medium. The proangiogenic cytokines secreted by CD34+/M-cad+ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34+/M-cad− cells during hypoxia.Conclusion
CD34+/M-cad+ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE−/− mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34+/M-cad+ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors. 相似文献14.
Lu Han Meng-Xiong Tang Yun Ti Zhi-Hao Wang Jia Wang Wen-Yuan Ding Hua Wang Yun Zhang Wei Zhang Ming Zhong 《PloS one》2013,8(11)
STAMP2 is a counterregulator of inflammation and insulin resistance. The aim of this study is to investigate whether activation of STAMP2 improves insulin resistance by regulating macrophage polarization in adipose tissues. The diabetic ApoE−/−/LDLR−/− mouse model was induced by high-fat diet and low-dose streptozotocin. Samples were obtained from epididymal, subcutaneous and brown adipose tissues. Infiltration of M1/M2 macrophages and inflammatory cytokines were investigated by immunohistochemistry. We then used gene overexpression to investigate the effect of STAMP2 on macrophages infiltration and polarization and inflammatory cytokines expression. Our results showed that infiltration of macrophages, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines were enhanced and STAMP2 was downregulated in adipose tissues of diabetic ApoE−/−/LDLR−/− mice compared with control mice. STAMP2 gene overexpression could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in epididymal and brown adipose tissues, improving insulin resistance. Our results suggested that STAMP2 gene overexpression may improve insulin resistance via regulating macrophage polarization in visceral and brown adipose tissues. 相似文献
15.
Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic system function. 相似文献
16.
Objective
To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe−/− mice.Methods
8 week-old Apoe−/− mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC), DSM 17938 (DSM), L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4), the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1), Fatty acid synthase (Fas) and Carnitine palmitoyltransferase 1a (Cpt1a). Atherosclerosis was assessed in the aortic root region of the heart.Results and Conclusions
Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a. 相似文献17.
18.
Chetan P. Hans Yumei Feng Amarjit S. Naura Mourad Zerfaoui Bashir M. Rezk Huijing Xia Alan D. Kaye Khalid Matrougui Eric Lazartigues A. Hamid Boulares 《PloS one》2009,4(10)
The aims of this study were to investigate the role of poly(ADP-ribose) polymerase (PARP)-1 in dyslipidemia-associated vascular dysfunction as well as autonomic nervous system dysregulation. Apolipoprotein (ApoE)−/− mice fed a high-fat diet were used as a model of atherosclerosis. Vascular and autonomic functions were measured in conscious mice using telemetry. The study revealed that PARP-1 plays an important role in dyslipidemia-associated vascular and autonomic dysfunction. Inhibition of this enzyme by gene knockout partially restored baroreflex sensitivity in ApoE−/− mice without affecting baseline heart-rate and arterial pressure, and also improved heart-rate responses following selective blockade of the autonomic nervous system. The protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction was associated with preservation of eNOS activity. Dyslipidemia induced PARP-1 activation was accompanied by oxidative tissue damage, as evidenced by increased expression of iNOS and subsequent protein nitration. PARP-1 gene deletion reversed these effects, suggesting that PARP-1 may contribute to vascular and autonomic pathologies by promoting oxidative tissue injury. Further, inhibition of this oxidative damage may account for protective effects of PARP-1 gene deletion on vascular and autonomic functions. This study demonstrates that PARP-1 participates in dyslipidemia-mediated dysregulation of the autonomic nervous system and that PARP-1 gene deletion normalizes autonomic and vascular dysfunctions. Maintenance of eNOS activity may be associated with the protective effect of PARP-1 gene deletion against dyslipidemia-induced endothelial dysfunction. 相似文献
19.
Background
We examined the influence of low-dose alcohol consumption on cerebral ischemia/reperfusion (I/R) injury in mice and a potential mechanism underlying the neuroprotective effect of low-dose alcohol consumption.Methodology/Principal Findings
C57BL/6 J mice were fed a liquid diet without or with 1% alcohol for 8 weeks, orally treated with rosiglitazone (20 mg/kg/day), a peroxisome proliferator-activated receptor gamma (PPARγ)-selective agonist, or GW9662 (3 mg/kg/day), a selective PPARγantagonist, for 2 weeks. The mice were subjected to unilateral middle cerebral artery occlusion (MCAO) for 90 minutes. Brain injury, DNA fragmentation and nuclear PPARγ protein/activity were evaluated at 24 hours of reperfusion. We found that the brain injury and DNA fragmentation were reduced in 1% alcohol-fed mice compared to nonalcohol-fed mice. Rosiglitazone suppressed the brain injury in nonalcohol-fed mice, but didn''t alter the brain injury in alcohol-fed mice. In contrast, GW9662 worsened the brain injury in alcohol-fed mice, but didn''t alter the brain injury in nonalcohol-fed mice. Nuclear PPARγ protein/activity at peri-infarct and the contralateral corresponding areas of the parietal cortex was greater in alcohol-fed mice compared to nonalcohol-fed mice. Using differentiated catecholaminergic (CATH.a) neurons, we measured dose-related influences of chronic alcohol exposure on nuclear PPARγ protein/activity and the influence of low-dose alcohol exposure on 2-hour oxygen-glucose deprivation (OGD)/24-hour reoxygenation-induced apoptosis. We found that low-dose alcohol exposure increased nuclear PPARγ protein/activity and protected against the OGD/reoxygenation-induced apoptosis. The beneficial effect of low-dose alcohol exposure on OGD/reoxygenation-induced apoptosis was abolished by GW9662.Conclusions/Significance
Our findings suggest that chronic consumption of low-dose alcohol protects the brain against I/R injury. The neuroprotective effect of low-dose alcohol consumption may be related to an upregulated PPARγ. 相似文献20.
Oliveira T. F. Batista P. R. Leal M. A. Campagnaro B. P. Nogueira B. V. Vassallo D. V. Meyrelles S. S. Padilha Alessandra Simão 《Biological trace element research》2019,187(1):163-171
Biological Trace Element Research - Cadmium exposure is related to cardiovascular diseases, including hypertension, atherosclerosis, increased oxidative stress, endothelial dysfunction, and... 相似文献