首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E.  相似文献   

2.
Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new antifungal drugs targeted to fungal virulence proteins using C. albicans as a model fungal pathogen.  相似文献   

3.
The uterine myometrium (UT-myo) is a therapeutic target for preterm labor, labor induction, and postpartum hemorrhage. Stimulation of intracellular Ca2+-release in UT-myo cells by oxytocin is a final pathway controlling myometrial contractions. The goal of this study was to develop a dual-addition assay for high-throughput screening of small molecular compounds, which could regulate Ca2+-mobilization in UT-myo cells, and hence, myometrial contractions. Primary murine UT-myo cells in 384-well plates were loaded with a Ca2+-sensitive fluorescent probe, and then screened for inducers of Ca2+-mobilization and inhibitors of oxytocin-induced Ca2+-mobilization. The assay exhibited robust screening statistics (Z´ = 0.73), DMSO-tolerance, and was validated for high-throughput screening against 2,727 small molecules from the Spectrum, NIH Clinical I and II collections of well-annotated compounds. The screen revealed a hit-rate of 1.80% for agonist and 1.39% for antagonist compounds. Concentration-dependent responses of hit-compounds demonstrated an EC50 less than 10μM for 21 hit-antagonist compounds, compared to only 7 hit-agonist compounds. Subsequent studies focused on hit-antagonist compounds. Based on the percent inhibition and functional annotation analyses, we selected 4 confirmed hit-antagonist compounds (benzbromarone, dipyridamole, fenoterol hydrobromide and nisoldipine) for further analysis. Using an ex vivo isometric contractility assay, each compound significantly inhibited uterine contractility, at different potencies (IC50). Overall, these results demonstrate for the first time that high-throughput small-molecules screening of myometrial Ca2+-mobilization is an ideal primary approach for discovering modulators of uterine contractility.  相似文献   

4.

Background

A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.

Methods

Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.

Results

Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo.

Conclusions

This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.  相似文献   

5.
To identify novel inhibitors of tyrosinase, a fluorescent assay was developed which is suitable for high-throughput screening. In the assay, oxidation of the substrate by tyrosinase leads to the release of a fluorescent coumarin. Several small molecules were identified that inhibited mushroom tyrosinase in vitro and human tyrosinase in cell culture. These compounds may represent lead structures for therapies targeted at disorders of hyperpigmentation.  相似文献   

6.
The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.  相似文献   

7.
Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators. Herein, the authors developed a fluorescence-based assay for measuring activity of the autophagy protease, autophagin-1(Atg4B). The assay employs a novel reporter substrate of Atg4B composed of a natural substrate (LC3B) fused to an assayable enzyme (PLA(2)) that becomes active upon cleavage by this cysteine protease. A high-throughput screening (HTS) assay was validated with excellent Z' factor (>0.7), remaining robust for more than 5 h and suitable for screening of large chemical libraries. The HTS assay was validated by performing pilot screens with 2 small collections of compounds enriched in bioactive molecules (n = 1280 for Lopac? and 2000 for Spectrum? library), yielding confirmed hit rates of 0.23% and 0.70%, respectively. As counterscreens, PLA(2) and caspase-3 assays were employed to eliminate nonspecific inhibitors. In conclusion, the LC3B-PLA(2) reporter assay provides a platform for compound library screening for identification and characterization of Atg4B-specific inhibitors that may be useful as tools for interrogating the role of autophagy in disease models.  相似文献   

8.
Human carbonic anhydrase II (CA II), a zinc metalloenzyme, was screened against 960 structurally diverse, biologically active small molecules. The assay monitored CA II esterase activity against the substrate 4-nitrophenyl acetate in a format allowing high-throughput screening. The assay proved to be robust and reproducible with a hit rate of approximately 2%. Potential hits were further characterized by determining their IC(50) and K(d) values and tested for nonspecific, promiscuous inhibition. Three known sulfonamide CA inhibitors were identified: acetazolamide, methazolamide, and celecoxib. Other hits were also found, including diuretics and antibiotics not previously identified as CA inhibitors, for example, furosemide and halazone. These results confirm that many sulfonamide drugs have CA inhibitory properties but also that not all sulfonamides are CA inhibitors. Thus many, but not all, sulfonamide drugs appear to interact with CA II and may target other CA isozymes. The screen also yielded several novel classes of nonsulfonamide inhibitors, including merbromin, thioxolone, and tannic acid. Although these compounds may function by some nonspecific mechanism (merbromin and tannic acid), at least 1 (thioxolone) appears to represent a genuine CA inhibitor. Thus, this study yielded a number of potentially new classes of CA inhibitors and preliminary experiments to characterize their mechanism of action.  相似文献   

9.
Homocitrate synthase (HCS) catalyzes the first step of l-lysine biosynthesis in fungi by condensing acetyl-coenzyme A and 2-oxoglutarate to form 3R-homocitrate and coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of approximately 41,000 small molecules. Following confirmation, counter screens, and dose–response analysis, we prioritized more than 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases, and enzymes involved in lipid metabolism.  相似文献   

10.
Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell-permeable modulators for development. For this purpose, we have used our recently optimized epidermal growth factor receptor (EGFR) biosensor assay to screen for modulators of EGFR activity. Here, we report on its validation under high-throughput screening (HTS) conditions displaying a signal-to-noise ratio of 21 and a Z' value of 0.56-attributes of a robust cell-based assay. We performed a pilot screen against a library of 6912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95%, respectively. Follow-up dose-response studies revealed that 12 of the 13 known EGFR inhibitors in the library were confirmed as hits. ZM-306416, a vascular endothelial growth factor receptor (VEGFR) antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone, and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.  相似文献   

11.
12.
Due to the involvement of macroautophagy/autophagy in different pathophysiological conditions such as infections, neurodegeneration and cancer, identification of novel small molecules that modulate the process is of current research and clinical interest. In this work, we developed a luciferase-based sensitive and robust kinetic high-throughput screen (HTS) of small molecules that modulate autophagic degradation of peroxisomes in the budding yeast Saccharomyces cerevisiae. Being a pathway-specific rather than a target-driven assay, we identified small molecule modulators that acted at key steps of autophagic flux. Two of the inhibitors, Bay11 and ZPCK, obtained from the screen were further characterized using secondary assays in yeast. Bay11 inhibited autophagy at a step before fusion with the vacuole whereas ZPCK inhibited the cargo degradation inside the vacuole. Furthermore, we demonstrated that these molecules altered the process of autophagy in mammalian cells as well. Strikingly, these molecules also modulated autophagic flux in a novel model plant, Aponogeton madagascariensis. Thus, using small molecule modulators identified by using a newly developed HTS autophagy assay, our results support that macroautophagy is a conserved process across fungal, animal and plant kingdoms.  相似文献   

13.
Bacterial DNA primase DnaG synthesizes RNA primers required for chromosomal DNA replication. Biochemical assays measuring primase activity have been limited to monitoring formation of radioactively labelled primers because of the intrinsically low catalytic efficiency of DnaG. Furthermore, DnaG is prone to aggregation and proteolytic degradation. These factors have impeded discovery of DnaG inhibitors by high-throughput screening (HTS). In this study, we expressed and purified the previously uncharacterized primase DnaG from Mycobacterium tuberculosis (Mtb DnaG). By coupling the activity of Mtb DnaG to that of another essential enzyme, inorganic pyrophosphatase from M. tuberculosis (Mtb PPiase), we developed the first non-radioactive primase–pyrophosphatase assay. An extensive optimization of the assay enabled its efficient use in HTS (Z′ = 0.7 in the 384-well format). HTS of 2560 small molecules to search for inhibitory compounds yielded several hits, including suramin, doxorubicin and ellagic acid. We demonstrate that these three compounds inhibit Mtb DnaG. Both suramin and doxorubicin are potent (low-µM) DNA- and nucleotide triphosphate-competitive priming inhibitors that interact with more than one site on Mtb DnaG. This novel assay should be applicable to other primases and inefficient DNA/RNA polymerases, facilitating their characterization and inhibitor discovery.  相似文献   

14.
The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.  相似文献   

15.
Botulinum neurotoxin (BoNT) is a potent and potentially lethal bacterial toxin that binds to host motor neurons, is internalized into the cell, and cleaves intracellular proteins that are essential for neurotransmitter release. BoNT is comprised of a heavy chain (HC), which mediates host cell binding and internalization, and a light chain (LC), which cleaves intracellular host proteins essential for acetylcholine release. While therapies that inhibit toxin binding/internalization have a small time window of administration, compounds that target intracellular LC activity have a much larger time window of administrations, particularly relevant given the extremely long half-life of the toxin. In recent years, small molecules have been heavily analyzed as potential LC inhibitors based on their increased cellular permeability relative to larger therapeutics (peptides, aptamers, etc.). Lead identification often involves high-throughput screening (HTS), where large libraries of small molecules are screened based on their ability to modulate therapeutic target function. Here we describe a FRET-based assay with a commercial BoNT/A LC substrate and recombinant LC that can be automated for HTS of potential BoNT inhibitors. Moreover, we describe a manual technique that can be used for follow-up secondary screening, or for comparing the potency of several candidate compounds.  相似文献   

16.
This communication describes the high-throughput screen of a diverse library of 50,000 small molecules against Escherichia coli dihydrofolate reductase to detect inhibitors. Sixty-two compounds were identified as having significant inhibitory activity against the enzyme. Secondary screening of these revealed twelve molecules that were competitive with dihydrofolate, nine of which have not been previously characterized as inhibitors of dihydrofolate reductase. These novel molecules ranged in potency (K(i)) from 26 nM to 11 microM and may represent fresh starting points for new small molecule therapeutics directed against dihydrofolate reductase.  相似文献   

17.
ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.  相似文献   

18.
We have used a combination of virtual screening (VS) and high-throughput screening (HTS) techniques to identify novel, non-peptidic small molecule inhibitors against human SARS-CoV 3CLpro. A structure-based VS approach integrating docking and pharmacophore based methods was employed to computationally screen 621,000 compounds from the ZINC library. The screening protocol was validated using known 3CLpro inhibitors and was optimized for speed, improved selectivity, and for accommodating receptor flexibility. Subsequently, a fluorescence-based enzymatic HTS assay was developed and optimized to experimentally screen approximately 41,000 compounds from four structurally diverse libraries chosen mainly based on the VS results. False positives from initial HTS hits were eliminated by a secondary orthogonal binding analysis using surface plasmon resonance (SPR). The campaign identified a reversible small molecule inhibitor exhibiting mixed-type inhibition with a Ki value of 11.1 μM. Together, these results validate our protocols as suitable approaches to screen virtual and chemical libraries, and the newly identified compound reported in our study represents a promising structural scaffold to pursue for further SARS-CoV 3CLpro inhibitor development.  相似文献   

19.
Despite intensive research, there are very few reagents with which to modulate and dissect the mRNA splicing pathway. Here, we describe a novel approach to identify such tools, based on detection of the exon junction complex (EJC), a unique molecular signature that splicing leaves on mRNAs. We developed a high-throughput, splicing-dependent EJC immunoprecipitation (EJIPT) assay to quantitate mRNAs spliced from biotin-tagged pre-mRNAs in cell extracts, using antibodies to EJC components Y14 and eukaryotic translation initiation factor 4aIII (eIF4AIII). Deploying EJIPT we performed high-throughput screening (HTS) in conjunction with secondary assays to identify splicing inhibitors. We describe the identification of 1,4-naphthoquinones and 1,4-heterocyclic quinones with known anticancer activity as potent and selective splicing inhibitors. Interestingly, and unlike previously described small molecules, most of which target early steps, our inhibitors represented by the benzothiazole-4,7-dione, BN82685, block the second of two trans-esterification reactions in splicing, preventing the release of intron lariat and ligation of exons. We show that BN82685 inhibits activated spliceosomes' elaborate structural rearrangements that are required for second-step catalysis, allowing definition of spliceosomes stalled in midcatalysis. EJIPT provides a platform for characterization and discovery of splicing and EJC modulators.  相似文献   

20.
In the bloodstream of mammalian hosts, the sleeping sickness parasite, Trypanosoma brucei, exists as a proliferative slender form or a nonproliferative, transmissible, stumpy form. The transition between these developmental forms is controlled by a density-dependent mechanism that is important for the parasite''s infection dynamics, immune evasion via ordered antigenic variation, and disease transmissibility. However, stumpy formation has been lost in most laboratory-adapted trypanosome lines, generating monomorphic parasites that proliferate uncontrolled as slender forms in vitro and in vivo. Nonetheless, these forms are readily amenable to cell culture and high-throughput screening for trypanocidal lead compounds. Here, we have developed and exploited a high-throughput screen for developmental phenotypes using a transgenic monomorphic cell line expressing a reporter under the regulation of gene control signals from the stumpy-specific molecule PAD1. Using a whole-cell fluorescence-based assay to screen over 6,000 small molecules from a kinase-focused compound library, small molecules able to activate stumpy-specific gene expression and proliferation arrest were assayed in a rapid assay format. Independent follow-up validation identified one hit able to induce modest, yet specific, changes in mRNA expression indicative of a partial differentiation to stumpy forms in monomorphs. Further, in pleomorphs this compound induced a stumpy-like phenotype, entailing growth arrest, morphological changes, PAD1 expression, and enhanced differentiation to procyclic forms. This not only provides a potential tool compound for the further understanding of stumpy formation but also demonstrates the use of high-throughput screening in the identification of compounds able to induce specific phenotypes, such as differentiation, in African trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号