首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinal pigment epithelium(RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood.Here, we isolated human primary RPE(h RPE) cells from 18 eye donors distributed over a wide age range(10–67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted p...  相似文献   

2.
The Polarity of the Retinal Pigment Epithelium   总被引:1,自引:0,他引:1  
The diversity of epithelia in the body permits a multitude of organ-specific functions. One of the foremost examples of this is the retinal pigment epithelium. Located between the photoreceptors of the retina and their principal blood supply, the choriocapillaris, the retinal pigment epithelium is critical for the survival and function of retinal photoreceptors. To serve this purpose, the retinal pigment epithelium cell has adapted the classic Golgi-to-cell-surface targeting pathways first described in such prototypic epithelial cell models as the Madin-Darby canine kidney cell, to arrive at a unique distribution of membrane and secreted proteins. More recent data suggest that the retinal pigment epithelium also takes advantage of its inherent asymmetry to augment the classical pathways of Golgi-to-cell-surface traffic. As retinal pigment epithelium transplants and gene therapy represent potential cures for retinal degenerative diseases, understanding the basis of the unique polarity properties of retinal pigment epithelium cells will be a critical issue for the development of future therapies.  相似文献   

3.
The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO2 production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO2 yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO2 production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.  相似文献   

4.
Carbachol and histamine stimulated phosphoinositide (PPI) hydrolysis in cultured human retinal pigment epithelium (RPE), as reflected by an accumulation of 3H-inositol phosphates in the presence of 10 mM Li+. Carbachol increased PPI hydrolysis to greater than 600% of basal with an EC50 of 60 microM; stimulation was linear up to 60 min. This activation likely occurred via the M3 muscarinic cholinergic receptor based on the IC50 values for 4-diphenylacetoxy-N-methylpiperidine methiodide (0.47 nM), pirenzepine (280 nM), and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11- dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one (1.4 microM). Carbachol-mediated PPI hydrolysis was decreased by 80% in the absence of extracellular Ca2+. Histamine stimulated PPI turnover in a linear manner by 180% with an EC50 of 20 microM by the H1 histaminergic receptor. Serotonin, glutamate, norepinephrine, and dopamine were inactive. In human RPE, the resting cytoplasmic Ca2+ concentration, as determined by fura-2 fluorescence, was 138 +/- 24 nM. On the addition of carbachol, there was a 180% increase in peak intracellular Ca2+; addition of histamine increased intracellular Ca2+ by 187%. These results suggest receptor-mediated, inositol lipid hydrolysis is coupled to intracellular Ca2+ flux in human RPE.  相似文献   

5.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.  相似文献   

6.
Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.  相似文献   

7.
8.
To investigate the degradation pathway of rod outer segments (ROS) in vivo, we injected gold-labeled ROS into the subretinal space of rabbits using a pars plana approach. Histology and electron microscopy performed on the specimens 72 hr after ROS injection revealed that the retina over the injection site was reattached, the retinal pigment epithelial (RPE) cells were intact, and gold granules were localized inside melanin granules and melanosomes. These results indicate that, in RPE, in vivo degradation of ROS is associated with melanosomes.  相似文献   

9.

Purpose

Little is known about the susceptibility of posterior segment tissues, particularly the human retinal pigment epithelium (hRPE), to Chlamydia trachomatis. The purpose of the study was to investigate the possibility of infecting the hRPE with Chlamydia trachomatis, and to examine the infectivity of different Chlamydia trachomatis clinical isolates for hRPE cells and the hRPE cell response to the infection.

Methods

Cultured hRPE and McCoy cells were inoculated with eight Chlamydia trachomatis (serovar E) clinical isolates at multiplicity of infection (MOI) of 2.0 or 0.3. To detect Chlamydia trachomatis, samples were stained immunohistochemically with anti-major outer membrane protein antibodies at 24h, 48h, and 72h postinoculation (PI). The changes in the expression of signaling molecules and proteins of cytoskeleton and extracellular matrix in hRPE cells were examined immunohistochemically.

Results

All eight clinical isolates demonstrated ability to infect hRPE cells. At equal MOI of 0.3, the infectivity of Chlamydia trachomatis clinical isolates for RPE culture was found to be at least as high as that for McCoy cell culture. At 24h PI, the percentage of inclusion-containing cells varied from 1.5 ± 0.52 to 14.6 ± 3.3% in hRPE cell culture infected at MOI of 2.0 against 0.37 ± 0.34 to 8.9 ± 0.2% in McCoy cell culture infected at MOI of 0.3. Collagen type I, collagen type IV, basic fibroblast growth factor, transforming growth factor-beta and interleukin–8 expression at 48h PI were maximally increased, by 2.1-, 1.3-, 1.5-, 1.5- and 1.6-fold, respectively, in the Chlamydia trachomatis-infected compared with control hRPE cell culture specimens (P < 0.05).

Conclusions

This study, for the first time, proved the possibility of infecting hRPE cultured cells with Chlamydia trachomatis, which leads to proproliferative and proinflammatory changes in the expression of signaling molecules and extracellular matrix components.  相似文献   

10.
11.
12.
No cure has been discovered for age-related macular degeneration (AMD), the leading cause of vision loss in people over the age of 55. AMD is complex multifactorial disease with an unknown etiology, although it is largely thought to occur due to death or dysfunction of the retinal pigment epithelium (RPE), a monolayer of cells that underlies the retina and provides critical support for photoreceptors. RPE cell replacement strategies may hold great promise for providing therapeutic relief for a large subset of AMD patients, and RPE cells that strongly resemble primary human cells (hRPE) have been generated in multiple independent labs, including our own. In addition, the uses for iPS-RPE are not limited to cell-based therapies, but also have been used to model RPE diseases. These types of studies may not only elucidate the molecular bases of the diseases, but also serve as invaluable tools for developing and testing novel drugs. We present here an optimized protocol for directed differentiation of RPE from stem cells. Adding nicotinamide and either Activin A or IDE-1, a small molecule that mimics its effects, at specific time points, greatly enhances the yield of RPE cells. Using this technique we can derive large numbers of low passage RPE in as early as three months.  相似文献   

13.
14.
Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are necessary for functional cell integrity. Preconditioning (PC), as we define it, is an acquired protection or resilience by a cell, tissue, or organ to a lethal stimulus enabled by a previous sublethal stressor or stimulus. In this study, we provide evidence that the omega-3 fatty acid docosahexaenoic acid (DHA) and its derivatives, the docosanoids 17-hydroxy docosahexaenoic acid (17-HDHA) and neuroprotectin D1 (NPD1), facilitate cell survival in both in vitro and in vivo models of retinal PC. We also demonstrate that PC requires the enzyme 15-lipoxygenase-1 (15-LOX-1), which synthesizes 17-HDHA and NPD1, and that this is specific to docosanoid signaling despite the concomitant release of the omega-6 arachidonic acid and eicosanoid synthesis. These findings advocate that DHA and docosanoids are protective enablers of PC in photoreceptor and retinal pigment epithelial cells.  相似文献   

15.
目的评价体外合成的A2E对猪视网膜色素上皮(RPE)细胞的细胞活力和生物学特性影响,为进一步研究A2E在RPE细胞相关疾病中的作用提供细胞模型。方法利用全反式视黄醛和乙醇胺体外合成脂褐质荧光基团A2E。不同浓度的A2E(0,50,75,100μmol/L)作用第3代体外培养的猪RPE细胞30,45,60,90min,换10%FBS DMEM-F12培养液孵育24h后,倒置荧光显微镜观察荧光强度,IPP6.0软件灰度扫描定量荧光强度。采用MTT法检测A2E作用细胞各个时间段的吸光度值,应用SPSS11.0软件包对数据进行统计学分析,评价A2E的细胞毒性及RPE细胞活性。结果A2E被RPE细胞摄取后主要分布于细胞核周围,具有自发荧光。MTT实验及荧光灰度扫描结果显示,不同浓度的A2E被细胞摄取后细胞活力和荧光灰度扫描结果不同,以50μmol/L浓度A2E作用RPE细胞60min时,细胞内荧光强度高同时细胞活力强。结论体外培养的猪RPE细胞摄取体外合成的50μmol/L A2E 60min后细胞对A2E的摄取较多,A2E对细胞的毒性相对较低,该条件下进行A2E对离体猪RPE细胞的研究较好。  相似文献   

16.
Retinal pigment epithelium (RPE) is a monolayer of cuboidal cells that is strategically placed between the rod and cone photoreceptors and the vascular bed of the choriocapillaris. It has many important functions, such as phagocytic uptake and breakdown of the shedded photoreceptor membranes, uptake, processing, transport and release of vitamin A (retinol), setting up the ion gradients within the interphotoreceptor matrix, building up the blood-retina barrier, and providing all transport from blood to the retina and back. This short review focuses on the role of the pigment granules in RPE. Although the biology of the pigment granules has been neglected in the past, they do seem to be involved in many important functions, such as protection from oxidative stress, detoxification of peroxides, and binding of zinc and drugs, and, therefore, serve as a versatile partner of the RPE cell. Melanin plays a role in the development of the fovea and routing of optic nerves. New findings show that the melanin granules are connected to the lysosomal degradation pathway. Most of these functions are not yet understood. Deficit of melanin pigment is associated with age-related macula degeneration, the leading cause of blindness.  相似文献   

17.
Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies.  相似文献   

18.
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.  相似文献   

19.
20.
Age-related macular degeneration (AMD) is the leading cause of legal blindness among the elderly population in the industrialized world, affecting about 14 million people in the United States alone. Smoking is a major environmental risk factor for AMD, and hydroquinone is a major component in cigarette smoke. Hydroquinone induces the formation of cell membrane blebs in human retinal pigment epithelium (RPE). Blebs may accumulate and eventually contribute first to sub-RPE deposits and then drusen formation, which is a prominent histopathologic feature in eyes with AMD. As an attempt to better understand the mechanisms involved in early AMD, we sought to investigate the proteomic profile of RPE blebs. Isolated blebs were subjected to SDS-PAGE fractionation, and in-gel trypsin-digested peptides were analyzed by LC-MS/MS that lead to the identification of a total of 314 proteins. Identified proteins were predominantly involved in oxidative phosphorylation, cell junction, focal adhesion, cytoskeleton regulation, and immunogenic processes. Importantly basigin and matrix metalloproteinase-14, key proteins involved in extracellular matrix remodeling, were identified in RPE blebs and shown to be more prevalent in AMD patients. Altogether our findings suggest, for the first time, the potential involvement of RPE blebs in eye disease and shed light on the implication of cell-derived microvesicles in human pathology.Age-related macular degeneration (AMD)1 is one of the most common pathologies in the retina, consisting in a chronic degenerative disorder that constitutes the leading cause of blindness in the elderly, probably affecting 14 million people in the United States. AMD is a multifactorial disease in nature in which age is the predominant risk factor, although there are also environmental factors involved. In this regard, smoking is thought to be a major environmental risk factor as supported by extensive epidemiological evidence (15). AMD develops in two different stages: early AMD (also referred to as dry AMD) and the late stage of AMD known as wet AMD by virtue of the extensive neovascularization taking place in the retina choroid. Although there is a fair understanding of the mechanisms involved in wet AMD, little is known about dry AMD and its transition into the most severe stage of this disorder, i.e. wet AMD (6).Early AMD targets the retinal pigment epithelium (RPE) and the Bruch membrane (BrM) in the retina. The RPE constitutes a cell monolayer that is crucial to maintain a normal photoreceptor function. In fact, RPE participates in the cycling of the visual molecules, provides nutrients to rods and cones, and is responsible for withdrawing waste debris from the outer segments of photoreceptors (7). The early stage of AMD is characterized by initial deregulation of the normal extracellular matrix (ECM) turnover leading to thickening of the BrM, sub-RPE deposit accumulation, and drusen formation (8). As mentioned earlier, cumulative evidence suggests that smoking may constitute a major risk factor for early AMD. In fact, we and others have provided evidence that hydroquinone (HQ), a major component of cigarette smoke, has the ability to deregulate the ECM (912). Aside from cigarette smoke, HQ is a compound of environmental relevance because of its broad presence in plastics, foodstuff, and air pollution (13, 14).Mild injuries inflected to the retina elicit a cellular response in the RPE consisting in pinching off small areas of the plasma membrane, which renders small microvesicles called blebs (15). The reason(s) behind membrane blebbing remains unknown, although it has been postulated to be an attempt to discard damaged cellular constituents by the RPE cell (8). Under prolonged injury, blebs may accumulate between the RPE and the basal lamina underneath this cell monolayer. Based on this concept, a plausible role for blebs in the pathogenesis of dry AMD has been suggested as a likely contributor to build-up of the sub-RPE deposits, which are characteristic of the early stages of this disorder (8). To date, however, RPE bleb composition and potential functions remain largely unexplored.However, membrane bleb or microvesicle production stimulated by a variety of stress has been extensively described in many different cell types (1623). To gain a better understanding of the functional relevance of blebs in general and the pathogenic mechanism(s) involved in early AMD in particular, we sought to investigate the identity of proteins carried by human RPE blebs. Previously microvesicles from lymphocytes have been subjected to analysis leading to the identification of a number of proteins (24). In our study, we show the proteomics characterization of stress-induced blebs in RPE cells from human retina. We report identification of several proteins, some of them potentially involved in matrix metalloproteinase (MMP) activation, membrane lipid raft formation, and immunogenic processes. Interestingly RPE blebs were found to carry basigin (including highly glycosylated species) and MMP-14, which are key proteins regulating the ECM turnover and remodeling. A previous proteomics study also has revealed the presence of basigin in the blebs from malignant lymphocytes (24). In the present study, we intended to gain some insight into the functional characterization of blebs to unravel some of the biological consequences of cell membrane blebbing in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号