首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid membranes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands. These bands are associated with the normal (N) and tautomer (T) excited-state species that result from an excited-state intramolecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T form of F2N12S were found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moieties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands between the two phases, which mainly resulted from the decreased hydration of the N form in the Lo phase. Importantly, the strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles. FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Furthermore, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in lipid phase upon cholesterol depletion and apoptosis.  相似文献   

2.
Real-time visualization of collagen is important in studies on tissue formation and remodeling in the research fields of developmental biology and tissue engineering. Our group has previously reported on a fluorescent probe for the specific imaging of collagen in live tissue in situ, consisting of the native collagen binding protein CNA35 labeled with fluorescent dye Oregon Green 488 (CNA35-OG488). The CNA35-OG488 probe has become widely used for collagen imaging. To allow for the use of CNA35-based probes in a broader range of applications, we here present a toolbox of six genetically-encoded collagen probes which are fusions of CNA35 to fluorescent proteins that span the visible spectrum: mTurquoise2, EGFP, mAmetrine, LSSmOrange, tdTomato and mCherry. While CNA35-OG488 requires a chemical conjugation step for labeling with the fluorescent dye, these protein-based probes can be easily produced in high yields by expression in E. coli and purified in one step using Ni2+-affinity chromatography. The probes all bind specifically to collagen, both in vitro and in porcine pericardial tissue. Some first applications of the probes are shown in multicolor imaging of engineered tissue and two-photon imaging of collagen in human skin. The fully-genetic encoding of the new probes makes them easily accessible to all scientists interested in collagen formation and remodeling.  相似文献   

3.
Russian Journal of Bioorganic Chemistry - Hypochlorous acid (HOCl) plays an important role in the immune system not only protecting the organism from pathogens, but also, due to its high...  相似文献   

4.
We report the first imaging of membrane lipid order in a whole, living vertebrate organism. This was achieved with the phase-sensitive, membrane-partitioning probe Laurdan in conjunction with multiphoton microscopy to image cell membranes in various tissues of live zebrafish embryos in three dimensions, including hindbrain, retina, muscle, gut, and kidney. The data also allowed quantitative analysis of membrane order, which showed high lipid order in the apical surfaces of polarized epithelial cells. The transition of membrane order imaging from cultured cell lines to living organisms is an important step forward in understanding the physiological relevance of membrane microdomains including lipid rafts.  相似文献   

5.

Background and Aims

Endoprotease activation is a key step in acute pancreatitis and early inhibition of these enzymes may protect from organ damage. In vivo models commonly used to evaluate protease inhibitors require animal sacrifice and therefore limit the assessment of dynamic processes. Here, we established a non-invasive fluorescence imaging-based biomarker assay to assess real-time protease inhibition and disease progression in a preclinical model of experimental pancreatitis.

Methods

Edema development and trypsin activation were imaged in a rat caerulein-injection pancreatitis model. A fluorescent “smart” probe, selectively activated by trypsin, was synthesized by labeling with Cy5.5 of a pegylated poly-L-lysine copolymer. Following injection of the probe, trypsin activation was monitored in the presence or absence of inhibitors by in vivo and ex vivo imaging.

Results

We established the trypsin-selectivity of the fluorescent probe in vitro using a panel of endopeptidases and specific inhibitor. In vivo, the probe accumulated in the liver and a region attributed to the pancreas by necropsy. A dose dependent decrease of total pancreatic fluorescence signal occurred upon administration of known trypsin inhibitors. The fluorescence-based method was a better predictor of trypsin inhibition than pancreatic to body weight ratio.

Conclusions

We established a fluorescence imaging assay to access trypsin inhibition in real-time in vivo. This method is more sensitive and dynamic than classic tissue sample readouts and could be applied to preclinically optimize trypsin inhibitors towards intrapancreatic target inhibition.  相似文献   

6.
Three new fluorescent probes were synthesized for improving the method of studying donor-donor energy migration (DDEM). Each probe has two identical fluorescent 7-diethylaminocoumarin-3-carbonyl groups attached to a rigid bisteroid dodecacyclic spacer through additional inserts. In two probes, the inserts are β-Ala and L-Ser residues, which provide for a different nearest environment of the fluorophores. The third probe has identical β-Ala inserts.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 331–334.Original Russian Text Copyright © 2005 by Boldyrev, Molotkovsky.  相似文献   

7.
Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.  相似文献   

8.
We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.  相似文献   

9.
Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.  相似文献   

10.
It has been shown that thin metal-based films can at certain frequencies act as planar near-field lenses for certain polarization components. A desirable property of such “lenses” is that they can also enhance and focus some large transverse spatial frequency components which contain sub-diffraction limit details. Over the last decade there has been much work in optimizing designs to reduce effects (such as material losses and surface roughness) that are detrimental to image reconstruction. One design that can reduce some of these undesirable effects, and which has received a fair amount of attention recently, is the stacked metal-dielectric superlens. Here we theoretically explore the imaging ability of such a design for the specific purpose of imaging a fluorescent dye (the common bio-marker GFP) in the vicinity of the superlens surface. Our calculations take into consideration the interaction (damping) of an oscillating electric dipole with the metallic layers in the superlens. We also assume a Gaussian frequency distribution spectrum for the dipole. We treat the metallic-alloy and dielectric-alloy layers separately using an appropriate effective medium theory. The transmission properties are evaluated via Transfer matrix (-matrix) calculations that were performed in the MatLab and MathCad environments. Our study shows that it is in principle possible to image fluorescent molecules using a simple bilayer planar superlens. We find that optimal parameters for such a superlens occur when the peak dipole emission-frequency is slightly offset from the Surface Plasmon resonance frequency of the metal-dielectric interfaces. The best resolution is obtained when the fluorescent molecules are not too close ( nm) or too far ( nm) from the superlens surface. The realization and application of a superlens with the specified design is possible using current nanofabrication techniques. When combined with e.g. a sub-wavelength grating structure (such as in the far-field superlens design previously proposed [1]) or a fast near-field scanning probe, it could provide a means for fast fluorescent imaging with sub-diffraction limit resolution.  相似文献   

11.
Russian Journal of Bioorganic Chemistry - Herein, we present a synthesis of a molecular construct based on the polysulfonated indocarbocyanine dye and the lysine. The chemical structure of the...  相似文献   

12.
13.
Over the years, the proteasome has been extensively investigated due to its crucial roles in many important signaling pathways and its implications in diseases. Two proteasome inhibitors—bortezomib and carfilzomib—have received FDA approval for the treatment of multiple myeloma, thereby validating the proteasome as a chemotherapeutic target. As a result, further research efforts have been focused on dissecting the complex biology of the proteasome to gain the insight required for developing next-generation proteasome inhibitors. It is clear that chemical probes have made significant contributions to these efforts, mostly by functioning as inhibitors that selectively block the catalytic activity of proteasomes. Analogues of these inhibitors are now providing additional tools for visualization of catalytically active proteasome subunits, several of which allow real-time monitoring of proteasome activity in living cells as well as in in vivo settings. These imaging probes will provide powerful tools for assessing the efficacy of proteasome inhibitors in clinical settings. In this review, we will focus on the recent efforts towards developing imaging probes of proteasomes, including the latest developments in immunoproteasome-selective imaging probes.  相似文献   

14.
15.
Abstract

Chemoattractant receptors represent a major subset of the G-protein coupled receptor (GPCR) family. One of the best characterized, the N-formyl peptide receptor (FPR), participates in host defense responses of neutrophils. The features of the ligand which regulate its interaction with the FPR are well-known. By manipulating these features we have developed new ligands to probe structural and mechanistic aspects of the peptide-receptor interaction. Three ligand groups have been developed: 1) ligands containing a Lys residue located in positions 2 through 7 that can be conjugated to FITC (N-formyl-Met1-Lys2-Phe3-Phe4, N-formyl-Met1-Leu2-Lys3-Phe4, N-formyl-Met1-Leu2-Phe3-Lys4, N-formyl-Met1-Leu2-Phe3-Phe4-Lys5, N-formyl-nLeu1-Leu2-Phe3-nLeu4-Tyr5-Lys6 and N-formyl-Met1-Leu2-Phe3-Phe4-Gly5-Gly6-Lys7; 2) fluorescent pentapeptide ligands (N-formyl-Met-X-Phe-Phe-Lys(FITC) where X = Leu, Ala, Val or Gly); and 3) small crosslinking ligands where the photoaffinity crosslinker 4-azidosalicylic acid (ASA) was conjugated to Lys in positions 3 and 4 and p-benzoyl-phenylalanine (Bpa) was located in position 2 in N-formyl-Met1-Bpa2-Phe3-Tyr4. The peptides were characterized according to activity and affinity in human neutrophils and cell lines transfected with FPR. All of the peptides were agonists, with parallel affinity and activity. In the first group, the peptide activity decreases as Lys is placed closer to the N-formyl group and the activity is improved by 1–3 orders of magnitude by conjugation with FITC. In the second group, the dissociation rate of the peptide from the receptor increases as position 2 is replaced by aliphatic amino acids with smaller alkyl groups. In the third group, crosslinking ligands remain biologically active, display nM affinity and covalently label the FPR.  相似文献   

16.
《Biophysical journal》2019,116(9):1692-1700
Transmembrane peptides contain polar residues in the interior of the membrane, which may alter the electrostatic environment and favor hydration in the otherwise nonpolar environment of the membrane core. Here, we demonstrate a general, nonperturbative strategy to probe hydration of the peptide backbone at specific depths within the bilayer using a combination of site-specific isotope labels, ultrafast two-dimensional infrared spectroscopy, and spectral modeling based on molecular dynamics simulations. Our results show that the amphiphilic pH-low insertion peptide supports a highly heterogeneous environment, with significant backbone hydration of nonpolar residues neighboring charged residues. For example, a leucine residue located as far as 1 nm into the hydrophobic bulk reports hydrogen-bonded populations as high as ∼20%. These findings indicate that the polar nature of these residues may facilitate the transport of water molecules into the hydrophobic core of the membrane.  相似文献   

17.
Uptake and Compartmentation of Fluorescent Probes by Plant Cells   总被引:6,自引:0,他引:6  
Several fluorescent compounds are now being used as probes forstudying plant transport processes. This review considers thepotential mechanisms of uptake of such probes with particularemphasis on their subsequent compartmentation within the cell.Physico-chemical parameters, such as the dissociation constant(pKa) and polarity (log kow) of the dye molecule provide importantguides as to the likely permeability of the plasmalemma to differentfluorochromes and an ion-trap mechanism may explain the accumulationof many fluorescent probes by plant cells. However, physico-chemicalparameters alone do not always explain the subsequent compartmentationof fluorescent probes within the cell. Evidence is accumulatingthat many anionic fluorescent probes may cross the plasmalemmain the undissociated state, followed by carrier-mediated transportof the anion across the tonoplast. In the specialized case ofthe highly dissociated dye, Lucifer Yellow CH (LYCH), the physico-chemicalproperties of the molecule would predict that it should be unableto cross membranes. Despite this, there have been several reportsof the movement of LYCH from the apoplast to the vacuole ofplant cells. Fluid-phase endocytosis has been implicated inthe vacuolar accumulation of LYCH and also a range of high-molecularweight, purified fluorescent conjugates. This evidence is discussedin the light of some reports that membrane-impermeant dyes,including LYCH, may cross the tonoplast following their microinjectioninto the cytoplasm.  相似文献   

18.
核仁是细胞内重要的亚核结构,其在恶性病的演变过程中扮演重要角色,是病理学家诊断癌症的重要指标.尽管核仁如此关键,但到目前为止,核仁的荧光探针寥寥无几.本文以水杨酸和1,8-二氨基萘为反应物,通过微波消解法合成了一种新型荧光碳纳米颗粒(FCNs),采用透射电子显微镜、动态光散射仪、傅里叶红外光谱仪、紫外分光光度计、荧光光谱仪等对其物理、化学、光学性质进行了表征、分析.借助激光扫描共聚焦等技术对FCNs的细胞摄取机制及分布进行了探究.实验结果表明,所合成碳纳米颗粒尺寸均匀,最佳激发波长在348 nm,对应的最大发射峰为432 nm,荧光量子产率为17.8%,荧光寿命为1.13 ns,其表面含有丰富的氨基和羟基,光稳定性强且毒性极低,可实现对细胞核仁染色,并且随着共孵育时间的延长,进入细胞的量越多,靶向核仁更明显.此外,经过对FCNs细胞摄取路径的考察,发现FCNs是通过小窝介导的路径被內吞.该研究为碳基纳米材料在亚细胞器靶向成像的应用方面提供了有力的工具和新思路.  相似文献   

19.
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.  相似文献   

20.
Cyclic GMP (cGMP) regulates many physiological processes by cooperating with the other signaling molecules such as cyclic AMP (cAMP) and Ca2+. Genetically encoded sensors for cGMP have been developed based on fluorescence resonance energy transfer (FRET) between fluorescent proteins. However, to analyze the dynamic relationship among these second messengers, combined use of existing sensors in a single cell is inadequate because of the significant spectral overlaps. A single wavelength indicator is an effective alternative to avoid this problem, but color variants of a single fluorescent protein-based biosensor are limited. In this study, to construct a new color fluorescent sensor, we converted the FRET-based sensor into a single wavelength indicator using a dark FRET acceptor. We developed a blue fluorescent cGMP biosensor, which is spectrally compatible with a FRET-based cAMP sensor using cyan and yellow fluorescent proteins (CFP/YFP). We cotransfected them and loaded a red fluorescent probe for Ca2+ into cells, and accomplished triple-parameter fluorescence imaging of these cyclic nucleotides and Ca2+, confirming the applicability of this combination to individually monitor their dynamics in a single cell. This blue fluorescent sensor and the approach using this FRET pair would be useful for multiparameter fluorescence imaging to understand complex signal transduction networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号