首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sahara in North Africa and the Gobi and Taklamakan deserts in Asia are the primary sources of mobilized dust in the atmosphere, with regional or global airborne transport estimated at 2 to 5 billion tonnes per year. Annual Asian dust plumes take about 7 to 10 d to cross the Pacific Ocean, and often reach the northwest USA between late February and May. In contrast, the peak season for the movement of African dust storms to the southeastern USA is typically June to August, and dust plumes take about 5 to 7 d to reach Florida. Although studies have documented that a wide range of bacteria, fungi, archaea, and viruses in dust plumes reach the USA each year, little is known about temporal and spatial variability in the microbial biodiversity in transoceanic dust plumes, or the effect on the deposition environments. A scoping study (called the Transoceanic Aerobiology Biodiversity Study) was conducted to develop field-based campaigns centered on examining the abundance, diversity, survival, and impact of microorganisms in transoceanic dust plumes arriving in the continental USA from Asia and Africa. This effort identified Science Questions (SQs) and Knowledge Gaps (KGs) that are highly relevant toward an understanding of the microbial diversity, transport, survival, and dispersal in transoceanic dusts. Science Questions were defined as broad science topics in transoceanic dust plume microbiology that were underexplored by the aerobiology community. Knowledge Gaps were defined as specific project-level research questions for each SQ that represented important topics in the study of transoceanic aerobiology.  相似文献   

2.
Microbial particles transported by Asian desert dust (KOSA) possibly impact ecosystems and human health in downwind environments and are commonly called ??bioaerosols.?? The microbial communities associated with KOSA mineral particles (KOSA bioaerosol), which were collected from the snow cover on Mt. Tateyama, were investigated by means of a culture-amendment technique combined with denaturing gradient gel electrophoresis (DGGE) analysis using 16S rRNA genes. After the stratigraphy of the snow layer formed on the walls of a snow pit on Mt. Tateyama, samples were collected from 2 layers, which included KOSA particles and one which did not. The snow samples with KOSA particles indicated microbial growth in the 100 and 10?1 dilution media and in the medium with NaCl below 10%, while the snow sample without KOSA particles showed no microbial growth in the culture media. The PCR?CDGGE analysis revealed that the bacterial compositions in the snow samples including KOSA mineral particles were mainly composed of the members of the phyla Actinobacteria, Firmicutus, and Proteobacteria. In particular, the 2 phylotypes appeared in the microbial cultures were similar to the members of the B. subtilis group, which has been detected in bioaerosol samples collected from the atmosphere over KOSA arrival (Suzu City) and source (Dunhuang City) regions. Presumably, halotolerant and oligotrophic bacterial communities are associated with the KOSA particles that descend to the snow cover on Mt. Tateyama.  相似文献   

3.
This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus (A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted (p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.  相似文献   

4.
Despite considerable progress, many details regarding the evolution of the Arcto-Tertiary flora, including the timing, direction, and relative importance of migration routes in the evolution of woody and herbaceous taxa of the Northern Hemisphere, remain poorly understood. Meehania (Lamiaceae) comprises seven species and five subspecies of annual or perennial herbs, and is one of the few Lamiaceae genera known to have an exclusively disjunct distribution between eastern Asia and eastern North America. We analyzed the phylogeny and biogeographical history of Meehania to explore how the Arcto-Tertiary biogeographic hypothesis and two possible migration routes explain the disjunct distribution of Northern Hemisphere herbaceous plants. Parsimony and Bayesian inference were used for phylogenetic analyses based on five plastid sequences (rbcL, rps16, rpl32-trnH, psbA-trnH, and trnL-F) and two nuclear (ITS and ETS) gene regions. Divergence times and biogeographic inferences were performed using Bayesian methods as implemented in BEAST and S-DIVA, respectively. Analyses including 11 of the 12 known Meehania taxa revealed incongruence between the chloroplast and nuclear trees, particularly in the positions of Glechoma and Meehania cordata, possibly indicating allopolyploidy with chloroplast capture in the late Miocene. Based on nrDNA, Meehania is monophyletic, and the North American species M. cordata is sister to a clade containing the eastern Asian species. The divergence time between the North American M. cordata and the eastern Asian species occurred about 9.81 Mya according to the Bayesian relaxed clock methods applied to the combined nuclear data. Biogeographic analyses suggest a primary role of the Arcto-Tertiary flora in the study taxa distribution, with a northeast Asian origin of Meehania. Our results suggest an Arcto-Tertiary origin of Meehania, with its present distribution most probably being a result of vicariance and southward migrations of populations during climatic oscillations in the middle Miocene with subsequent migration into eastern North America via the Bering land bridge in the late Miocene.  相似文献   

5.
Airborne microorganisms have significant effects on human health, and children are more vulnerable to pathogens and allergens than adults. However, little is known about the microbial communities in the air of childcare facilities. Here, we analyzed the bacterial and fungal communities in 50 air samples collected from five daycare centers and five elementary schools located in Seoul, Korea using culture-independent high-throughput pyrosequencing. The microbial communities contained a wide variety of taxa not previously identified in child daycare centers and schools. Moreover, the dominant species differed from those reported in previous studies using culture-dependent methods. The well-known fungi detected in previous culture-based studies (Alternaria, Aspergillus, Penicillium, and Cladosporium) represented less than 12% of the total sequence reads. The composition of the fungal and bacterial communities in the indoor air differed greatly with regard to the source of the microorganisms. The bacterial community in the indoor air appeared to contain diverse bacteria associated with both humans and the outside environment. In contrast, the fungal community was largely derived from the surrounding outdoor environment and not from human activity. The profile of the microorganisms in bioaerosols identified in this study provides the fundamental knowledge needed to develop public health policies regarding the monitoring and management of indoor air quality.  相似文献   

6.
Relationships among East Asian, North American and European Laetiporus sulphureus s. lat., a cosmopolitan brown rot species complex, were assessed with phylogenetic analyses and incompatibility tests. Three East Asian taxa, Laetiporus cremeiporus sp. nov., Laetiporus montanus and Laetiporus versisporus, are described and illustrated as well as compared with related taxa from Southeast Asia, North America and Europe. Phylogenetic analyses showed that L. cremeiporus and L. versisporus are clearly distinct species among Laetiporus taxa. The three conifer inhabiting species, Laetiporus conifericola, Laetiporus huroniensis and L. montanus, are closely related to each other. The European population of L. montanus exhibits two sequence variants of the EF1α: one is the same as observed in L. sulphureus in Europe and the other is that observed in East Asian population of L. montanus. A key to the known species of Laetiporus in the northern hemisphere is provided.  相似文献   

7.
Fungal spores are widespread and common in the atmosphere. In this study, we use a metagenomic approach to study the fungal diversity in six total air samples collected from April to May 2012 in Seoul, Korea. This springtime period is important in Korea because of the peak in fungal spore concentration and Asian dust storms, although the year of this study (2012) was unique in that were no major Asian dust events. Clustering sequences for operational taxonomic unit (OTU) identification recovered 1,266 unique OTUs in the combined dataset, with between 223?96 OTUs present in individual samples. OTUs from three fungal phyla were identified. For Ascomycota, Davidiella (anamorph: Cladosporium) was the most common genus in all samples, often accounting for more than 50% of all sequences in a sample. Other common Ascomycota genera identified were Alternaria, Didymella, Khuskia, Geosmitha, Penicillium, and Aspergillus. While several Basidiomycota genera were observed, Chytridiomycota OTUs were only present in one sample. Consistency was observed within sampling days, but there was a large shift in species composition from Ascomycota dominant to Basidiomycota dominant in the middle of the sampling period. This marked change may have been caused by meteorological events. A potential set of 40 allergyinducing genera were identified, accounting for a large proportion of the diversity present (22.5?7.2%). Our study identifies high fungal diversity and potentially high levels of fungal allergens in springtime air of Korea, and provides a good baseline for future comparisons with Asian dust storms.  相似文献   

8.
Free Tropospheric Transport of Microorganisms from Asia to North America   总被引:1,自引:0,他引:1  
Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7?km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94?×?10?5?ng DNA m?3 for bacteria and 4.77?×?10?3?ng DNA m?3 for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4?% of bacterial and 47.6?% of fungal samples (N?=?124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22–23 April 2011 and 13–15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10?days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.  相似文献   

9.
The “Calcaires à Productus” or “Calcaires à Productus giganteus” on the southern slope of the Montagne Noire (Hérault, France) consist of numerous isolated olistolitic limestone blocks, generally transported by gravitational flows into siliciclastic basinal deposits. The present paper is the first systematic monographic study of gigantoproductids, semiplanids, and some other large-sized productid brachiopods from the upper Viséan to Serpukhovian strata of the Montagne Noire. Gigantoproductids are represented by abundant Datangia semiglobosa and Kansuella spp.; a single Globosoproductus specimen is described. The semiplanids are represented by Latiproductus aff. latissimus, Llatissimus complicatus and Ledelburgensis, and the linoproductids by Balakhonia aff. kokdscharensis. The Montagne Noire productid faunas are found in very different facies including shell beds and microbial mounds. They are most abundant in assemblages from agitated, shallow water environments with a firm substrate where rugose corals are rare or absent. The palaeobiogeographical relations to the other regions in the western Palaeotethys are often limited to taxa with an almost cosmopolitan character. Worth noting is the absence of Gigantoproductus sensu stricto in the Montagne Noire. This genus, and other brachiopod taxa, migrated probably during the late Serpukhovian into southern France. On a larger scale, the presence of Kansuella indicates faunal exchanges with the eastern Palaeotethys (South China) via a westward migration path along North China, the Central Asian Orogenic Belt and south-eastern Laurussia. The studied taxa, even at the genus level, did not migrate into North America even if the Alleghanian Isthmus was still open.  相似文献   

10.
The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.  相似文献   

11.

Background

Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Methodology/Principal Findings

The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil.

Conclusions/Significance

These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.  相似文献   

12.
Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears resilient.  相似文献   

13.
Selection for probiotic candidates by in vivo experimental trials is time and labor consuming; more informed strategy is needed to select successful probiotic candidates. The aim of the study was to elucidate the microbial taxa transmitted from maize seeds to seedlings during the germination process of maize and their probiotic effects. The bacterial and fungal taxa in kernel germs and sprouts were analyzed by Illumina-based sequencing. The sprouts contained more diverse fungi than those in germs. The bacterial species (OTUs) declined with the germination from germs to the sprouts. However, the endophytic fungal diversity increased during the germination process. Seed-borne dominant bacterial genera Bacillus, Halomonas, and Shewanella and dominant fungal genera Aspergillus were also detected in sprouts. The spore-forming bacteria BS3 isolated directly from sprouts could promote growth of maize seedling and resistance to F. verticillioides under F. verticillioides-infested soils. The results suggested that maize contained core bacterial and fungal taxa during the development from seeds to sprouts, and the core endophytes showed more intimate correlation with host plants than did other microbial taxa. Illumina-based sequence analysis is feasible to guide probiotic candidate selection and isolation.  相似文献   

14.

Background

Previous studies have focused on linking soil community structure, diversity, or specific taxa to disturbances. Relatively little attention has been directed to crop monoculture soils, particularly potato monoculture. Information about microbial community changes over time between monoculture and non-monoculture treatments is lacking. Furthermore, few studies have examined microbial communities in potato monoculture soils using a high throughput pyrosequencing approach.

Methodology/Principal Findings

Soils along a seven-year gradient of potato monoculture were collected and microbial communities were characterized using high throughput pyrosequencing approach. Principal findings are as follows. First, diversity (H Shannon) and richness (S Chao1) indices of bacterial community, but not of fungal community, were linearly decreased over time and corresponded to a decline of soil sustainability represented by yield decline and disease incidence increase. Second, Fusarium, the only soilborne pathogen-associated fungal genus substantially detected, was linearly increased over time in abundance and was closely associated with yield decline. Third, Fusarium abundance was negatively correlated with soil organic matter (OM) and total nitrogen (TN) but positively with electrical conductivity (EC). Fourth, Fusarium was correlated in abundances with 6 bacterial taxa over time.

Conclusions

Soil bacterial and fungal communities exhibited differential responses to the potato monoculture. The overall soil bacterial communities were shaped by potato monoculture. Fusarium was the only soilborne pathogen-associated genus associated with disease incidence increase and yield decline. The changes of soil OM, TN and EC were responsible for Fusarium enrichment, in addition to selections by the monoculture crop. Acidobacteria and Nitrospirae were linearly decreased over time in abundance, corresponding to the decrease of OM, suggesting their similar ecophysiologial trait. Correlations between abundance of Fusarium with several other bacterial taxa suggested their similar behaviors in responses to potato monoculture and/or soil variables, providing insights into the ecological behaviors of these taxa in the environment.  相似文献   

15.
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.  相似文献   

16.
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.  相似文献   

17.
The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.  相似文献   

18.
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession.  相似文献   

19.
Vacuum cleaners can release large concentrations of particles, both in their exhaust air and from resuspension of settled dust. However, the size, variability, and microbial diversity of these emissions are unknown, despite evidence to suggest they may contribute to allergic responses and infection transmission indoors. This study aimed to evaluate bioaerosol emission from various vacuum cleaners. We sampled the air in an experimental flow tunnel where vacuum cleaners were run, and their airborne emissions were sampled with closed-face cassettes. Dust samples were also collected from the dust bag. Total bacteria, total archaea, Penicillium/Aspergillus, and total Clostridium cluster 1 were quantified with specific quantitative PCR protocols, and emission rates were calculated. Clostridium botulinum and antibiotic resistance genes were detected in each sample using endpoint PCR. Bacterial diversity was also analyzed using denaturing gradient gel electrophoresis (DGGE), image analysis, and band sequencing. We demonstrated that emission of bacteria and molds (Penicillium/Aspergillus) can reach values as high as 1E5 cell equivalents/min and that those emissions are not related to each other. The bag dust bacterial and mold content was also consistent across the vacuums we assessed, reaching up to 1E7 bacterial or mold cell equivalents/g. Antibiotic resistance genes were detected in several samples. No archaea or C. botulinum was detected in any air samples. Diversity analyses showed that most bacteria are from human sources, in keeping with other recent results. These results highlight the potential capability of vacuum cleaners to disseminate appreciable quantities of molds and human-associated bacteria indoors and their role as a source of exposure to bioaerosols.  相似文献   

20.
Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 μm to 0.2 μm) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 μm in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号