首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) causes hemorrhagic colitis and hemolytic uremic syndrome (HUS) that can lead to fatal encephalopathies. Neurological abnormalities may occur before or after the onset of systemic pathological symptoms and motor disorders are frequently observed in affected patients and in studies with animal models. As Stx2 succeeds in crossing the blood-brain barrier (BBB) and invading the brain parenchyma, it is highly probable that the observed neurological alterations are based on the possibility that the toxin may trigger the impairment of the neurovascular unit and/or cell damage in the parenchyma. Also, lipopolysaccharide (LPS) produced and secreted by enterohemorrhagic Escherichia coli (EHEC) may aggravate the deleterious effects of Stx2 in the brain. Therefore, this study aimed to determine (i) whether Stx2 affects the neurovascular unit and parenchymal cells, (ii) whether the contribution of LPS aggravates these effects, and (iii) whether an inflammatory event underlies the pathophysiological mechanisms that lead to the observed injury. The administration of a sub-lethal dose of Stx2 was employed to study in detail the motor cortex obtained from a translational murine model of encephalopathy. In the present paper we report that Stx2 damaged microvasculature, caused astrocyte reaction and neuronal degeneration, and that this was aggravated by LPS. Dexamethasone, an anti-inflammatory, reversed the pathologic effects and proved to be an important drug in the treatment of acute encephalopathies.  相似文献   

2.
Cattle are a known reservoir of Shiga toxin-producing Escherichia coli. The prevalence and stability of Shiga toxin and/or Shiga toxin genes among native wild ungulates in Idaho were investigated. The frequency of both Shiga genes and toxin was similar to that reported for Idaho cattle (~19%).  相似文献   

3.

Background

The diarrhea associated hemolytic uremic syndrome (HUS) is a major cause of acute uremic failure in children, but not very common in adults. The enterohaemorrhagic Escherichia coli -epidemic in Germany in 2011 affected mostly young and healthy adults. While their immediate deficits have been published, not much is known about the time course and degree of recovery concerning cognitive and behavioral impairment.

Methods and Findings

Twenty patients with Shiga toxin –producing Escherichia coli infection and neurological symptoms underwent comprehensive neuropsychological assessment 3 months and 1 year after the acute disease. Overall, there was an excellent recovery of cognitive functions. In a detailed neuropsychological analysis no significant deficits could be noticed 1 year after the infection in terms of cognitive function, alertness, executive functions and speech. Interestingly there were no correlations between different indicators for severity of disease (hemoglobin and creatinin levels, days of hospitalization, neurological symptoms and MRI changes) and neuropsychological outcome. However, there were a small number of patients with limitations in every day and professional life even one year after the acute disease.

Conclusions

Our study does not provide definitive answers regarding risk factors for these limitations. Still since Shiga toxin –producing Escherichia coli infection is a rare condition in adults, the information this study provides is important for the clinical practice. On one hand for consulting patients and on the other to raise the awareness of the physicians to possible long term complains and the consideration of neuropsychological assessment and supportive psychological treatment.  相似文献   

4.
Shiga toxin-producing Escherichia coli (STEC) strains of O157:H7 serotype are a predominant cause of haemolytic uraemic syndrome (HUS) worldwide, but strains of non-O157 serotypes can also be associated with serious disease. Some of them are associated with outbreaks of HUS, others with sporadic cases of HUS, and some with diarrhoea but not with outbreaks or HUS. A large number of STEC serotypes isolated from ruminants and foods have never been associated with human disease. In this study we characterize a STEC strain belonging to serotype O171:H25 that is responsible for a case of HUS. This strain has a single Shiga toxin gene encoding Stx2 toxin, and hlyA gene, but is eae-negative.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC), especially of serotype O157:H7, cause a zoonotic food or waterborne enteric illness that is often associated with large epidemic outbreaks as well as the hemolytic uremic syndrome (HUS), the leading cause of acute renal failure in children. After ingestion, STEC colonize enterocytes of the large bowel with a characteristic attaching and effacing pathology, which is mediated by components of a type III secretion apparatus encoded by the LEE pathogenicity island. Shiga toxins are translocated from the bowel to the circularoty system and transported by leukocytes to capillary endothelial cells in renal glomeruli and other organs. After binding to the receptor globotriaosylceramide on target cells, the toxin is internalized by receptor-mediated endocytosis and interacts with the subcellular machinery to inhibit protein synthesis. This leads to pathophysiological changes that result in HUS. Specific therapeutic or preventive strategies are presently not available. The recent sequencing of genomes of two epidemic E. coli O157 strains has revealed novel pathogenicity islands which will likely provide new insights into the virulence of these bacteria.  相似文献   

6.

Background

In May 2011 an outbreak of Shiga toxin-producing enterohaemorrhagic E. coli (STEC) O104:H4 in Northern Germany led to a high number of in-patients, suffering from post-enteritis haemolytic-uraemic syndrome (HUS) and often severe affection of the central nervous system. To our knowledge so far only neurological manifestations have been described systematically in literature.

Aim

To examine psychiatric symptoms over time and search for specific symptom clusters in affected patients.

Methods

31 in-patients suffering from E. coli O104:H4 associated HUS, were examined and followed up a week during the acute hospital stay. Psychopathology was assessed by clinical interview based on the AMDP Scale, the Brief Symptom Inventory and the Clinical Global Impressions Scale.

Results

At baseline mental disorder due to known physiological condition (ICD-10 F06.8) was present in 58% of the examined patients. Patients suffered from various manifestations of cognitive impairment (n = 27) and hallucinations (n = 4). Disturbances of affect (n = 28) included severe panic attacks (n = 9). Psychiatric disorder was significantly associated with higher age (p<0.0001), higher levels of C-reactive protein (p<0.05), and positive family history of heart disease (p<0.05). Even within the acute hospital stay with a median follow up of 7 days, symptoms improved markedly over time (p <0.0001).

Conclusions

Aside from severe neurological symptoms the pathology in E.coli O104:H4 associated HUS frequently includes particular psychiatric disturbances. Long term follow up has to clarify whether or not these symptoms subside.  相似文献   

7.
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.  相似文献   

8.
To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.  相似文献   

9.
产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli,STEC)是重要的食源性病原,而STEC往往以正常菌群的形式存在于牛羊等反刍动物肠道.[目的]本研究对牛羊粪便样品中的STEC分离和鉴定并对分离株进行致病潜力分析.从江苏、云南和河北等地共分离到羊源STEC菌株11株,牛源...  相似文献   

10.
Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells’ basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.  相似文献   

11.
Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.  相似文献   

12.

Background

Escherichia coli O104:H4 that caused the large German outbreak in 2011 is a highly virulent hybrid of enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. The strain displays “stacked-brick” aggregative adherence to human intestinal epithelial cells mediated by aggregative adherence fimbriae I (AAF/I) encoded on the pAA plasmid. The AAF/I-mediated augmented intestinal adherence might facilitate systemic absorption of Shiga toxin, the major virulence factor of EHEC, presumably enhancing virulence of the outbreak strain. However, the stability of pAA in the outbreak strain is unknown. We therefore tested outbreak isolates for pAA, monitored pAA loss during infection, and determined the impact of pAA loss on adherence and clinical outcome of infection.

Methodology/Principal Findings

E. coli O104:H4 outbreak isolates from 170 patients (128 with hemolytic uremic syndrome [HUS] and 42 with diarrhea without HUS) were tested for pAA using polymerase chain reaction and plasmid profiling. pAA-harboring bacteria in stool samples were quantified using colony blot hybridization, and adherence to HCT-8 cells was determined. Isolates from 12 (7.1%) patients lacked pAA. Analyses of sequential stool samples demonstrated that the percentages of pAA-positive populations in the initial stools were significantly higher than those in the follow-up stools collected two to eight days later in disease (P≤0.01). This indicates a rapid loss of pAA during infections of humans. The pAA loss was associated with loss of the aggregative adherence phenotype and significantly reduced correlation with HUS (P  = 0.001).

Conclusions/Significance

The pAA plasmid can be lost by E. coli O104:H4 outbreak strain in the human gut in the course of disease. pAA loss might attenuate virulence and diminish the ability to cause HUS. The pAA instability has clinical, diagnostic, epidemiologic, and evolutionary implications.  相似文献   

13.
In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.  相似文献   

14.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

15.
The hemolytic uremic syndrome (HUS) associated with diarrhea is a complication of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB) was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC) has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF) and platelet/endothelial cell adhesion molecule 1 (PECAM-1). HGEC also expressed the globotriaosylceramide (Gb3) receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 −a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.  相似文献   

16.
The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina.  相似文献   

17.
An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f) infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx 2f gene fragments were detected by PCR in 16 (2.9%) of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods). Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx 2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfA O26, irp 2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health-related disease management strategies in Japan.  相似文献   

18.
A large outbreak of gastrointestinal disease occurred in 2011 in Germany which resulted in almost 4000 patients with acute gastroenteritis or hemorrhagic colitis, 855 cases of a hemolytic uremic syndrome and 53 deaths. The pathogen was an uncommon, multiresistant Escherichia coli strain of serotype O104:H4 which expressed a Shiga toxin characteristic of enterohemorrhagic E. coli and in addition virulence factors common to enteroaggregative E. coli. During post-epidemic surveillance of Shiga toxin-producing E. coli (STEC) all but two of O104:H4 isolates were indistinguishable from the epidemic strain. Here we describe two novel STEC O104:H4 strains isolated in close spatiotemporal proximity to the outbreak which show a virulence gene panel, a Shiga toxin-mediated cytotoxicity towards Vero cells and aggregative adherence to Hep-2 cells comparable to the outbreak strain. They differ however both from the epidemic strain and from each other, by their antibiotic resistance phenotypes and some other features as determined by routine epidemiological subtyping methods. Whole genome sequencing of these two strains, of ten outbreak strain isolates originating from different time points of the outbreak and of one historical sporadic EHEC O104:H4 isolate was performed. Sequence analysis revealed a clear phylogenetic distance between the two variant strains and the outbreak strain finally identifying them as epidemiologically unrelated isolates from sporadic cases. These findings add to the knowledge about this emerging pathogen, illustrating a certain diversity within the bacterial core genome as well as loss and gain of accessory elements. Our results do also support the view that distinct new variants of STEC O104:H4 repeatedly might originate from yet unknown reservoirs, rather than that there would be a continuous diversification of a single epidemic strain established and circulating in Germany after the large outbreak in 2011.  相似文献   

19.
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.  相似文献   

20.
A large outbreak of Shiga toxin (Stx)-producing enteroaggregative Escherichia coli (EAEC) O104:H4 occurred in northern Germany. From this outbreak, at least 900 patients developed hemolytic uremic syndrome (HUS), resulting in more than 50 deaths. Thirty percent of the HUS patients showed encephalopathy. We previously established a mouse model with encephalopathy associated with blood brain barrier (BBB) damage after oral infection with the Shiga toxin (Stx) 2c-producing Escherichia coli O157: H- strain E32511 (E32511). In this model, we detected high expression of the Stx receptor synthase enzyme, glycosphingolipid globotriaosylceramide (Gb3) synthase, in endothelial cells (ECs) and neurons in the reticular formation of the medulla oblongata by in situ hybridization. Caspase-3 was activated in neurons in the reticular formation of the medulla oblongata and the anterior horn of the spinal cord. Astrocytes (ASTs) were activated in the medulla oblongata and spinal cord, and a decrease in aquaporin 4 around the ECs suggested that BBB integrity was compromised directly by Stx2c or through the activation of ASTs. We also report the effectiveness of azithromycin (AZM) in our model. Moreover, AZM strongly inhibited the release of Stx2c from E32511 in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号