首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Diabetes is a chronic disease associated to a cardiac contractile dysfunction that is not attributable to underlying coronary artery disease or hypertension, and could be consequence of a progressive deterioration of mitochondrial function. We hypothesized that impaired mitochondrial function precedes Diabetic Cardiomyopathy. Thus, the aim of this work was to study the cardiac performance and heart mitochondrial function of diabetic rats, using an experimental model of type I Diabetes. Rats were sacrificed after 28 days of Streptozotocin injection (STZ, 60 mg kg−1, ip.). Heart O2 consumption was declined, mainly due to the impairment of mitochondrial O2 uptake. The mitochondrial dysfunction observed in diabetic animals included the reduction of state 3 respiration (22%), the decline of ADP/O ratio (∼15%) and the decrease of the respiratory complexes activities (22–26%). An enhancement in mitochondrial H2O2 (127%) and NO (23%) production rates and in tyrosine nitration (58%) were observed in heart of diabetic rats, with a decrease in Mn-SOD activity (∼50%). Moreover, a decrease in contractile response (38%), inotropic (37%) and lusitropic (58%) reserves were observed in diabetic rats only after a β‐adrenergic stimulus. Therefore, in conditions of sustained hyperglycemia, heart mitochondrial O2 consumption and oxidative phosphorylation efficiency are decreased, and H2O2 and NO productions are increased, leading to a cardiac compromise against a work overload. This mitochondrial impairment was detected in the absence of heart hypertrophy and of resting cardiac performance changes, suggesting that mitochondrial dysfunction could precede the onset of diabetic cardiac failure, being H2O2, NO and ATP the molecules probably involved in mitochondrion-cytosol signalling.  相似文献   

2.
3.
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.  相似文献   

4.
We investigated the effect of PKA treatment (1 U/ml) on the mechanical properties of isolated human cardiac myofibrils. PKA treatment was associated with significant incorporation of radiolabeled phosphate into several sarcomeric proteins including troponin I and myosin binding protein C and was also associated with a right shift in the tension-pCa relation (ΔpCa(50) = 0.2 ± 0.1). PKA treatment also caused right shifts in the pCa dependence of the rate of tension development, tension redevelopment, and the linear and exponential phases of myofibril relaxation. However, there was no change in the same measures of crossbridge turnover when expressed as a function of tension. We conclude that the changes in crossbridge kinetics as a function of calcium concentration reflect a reduced tension due to a lower calcium sensitivity and that the relationship between crossbridge kinetics and tension was unchanged, indicating no direct effect of PKA treatment on crossbridge cycling.  相似文献   

5.
Park S  Hong SM  Lee JE  Sung SR 《Life sciences》2007,80(26):2428-2435
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague–Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.  相似文献   

6.

Background

STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein expressed early in cardiac development that acts as an acute stress sensor for pathological remodeling. However the role of STARS in cardiac development and function is incompletely understood. Here, we investigated the role of STARS in heart development and function in the zebrafish model and in vitro.

Methodology and Principal Findings

Expression of zebrafish STARS (zSTARS) first occurs in the somites by the 16 somite stage [17 hours post fertilization (hpf)]. zSTARS is expressed in both chambers of the heart by 48 hpf, and also in the developing brain, jaw structures and pectoral fins. Morpholino-induced knockdown of zSTARS alters atrial and ventricular dimensions and decreases ventricular fractional shortening (measured by high-speed video microscopy), with pericardial edema and decreased or absent circulation [abnormal cardiac phenotypes in 126/164 (77%) of morpholino-injected embryos vs. 0/152 (0%) of control morpholino embryos]. Co-injection of zsrf (serum response factor) mRNA rescues the cardiac phenotype of zSTARS knockdown, resulting in improved fractional shortening and ventricular end-diastolic dimensions. Ectopic over-expression of STARS in vitro activates the STARS proximal promoter, which contains a conserved SRF site. Chromatin immunoprecipitation demonstrates that SRF binds to this site in vivo and the SRF inhibitor CCG-1423 completely blocks STARS proximal reporter activity in H9c2 cells.

Conclusions/Significance

This study demonstrates for the first time that STARS deficiency severely disrupts cardiac development and function in vivo and revealed a novel STARS-SRF feed-forward autoregulatory loop that could play an essential role in STARS regulation and cardiac function.  相似文献   

7.
This study determined the effects of exercise training on cardiac function, gene expression, and apoptosis. Rats exposed to a regimen of treadmill exercise for 13 wk had a significant increase in cardiac index and stroke volume index and a concomitant decrease in systemic vascular resistance compared with both age-matched and body weight-matched sedentary controls in the conscious state at rest. In exercise-trained animals, there was no change in the expression of several marker genes known to be associated with pathological cardiac adaptation, including atrial natriuretic factor, beta-myosin heavy chain, alpha-skeletal and smooth muscle actins, and collagens I and III. Exercise training, however, produced a significant induction of alpha-myosin heavy chain, which was not observed in rats with myocardial infarction. No histological features of cardiac apoptosis were observed in the treadmill-trained rats. In contrast, apoptotic myocytes were detected in animals with myocardial infarction. In summary, exercise training improves cardiac function without evidence of cardiac apoptosis and produces a pattern of cardiac gene expression distinct from pathological cardiac adaptation.  相似文献   

8.
In the present study, we tested the reliability of measurements of pressure-volume area (PVA) and oxygen consumption (MVo(2)) in ex vivo mouse hearts, combining the use of a miniaturized conductance catheter and a fiber-optic oxygen sensor. Second, we tested whether we could reproduce the influence of increased myocardial fatty acid (FA) metabolism on cardiac efficiency in the isolated working mouse heart model, which has already been documented in large animal models. The hearts were perfused with crystalloid buffer containing 11 mM glucose and two different concentrations of FA bound to 3% BSA. The initial concentration was 0.3 +/- 0.1 mM, which was subsequently raised to 0.9 +/- 0.1 mM. End-systolic and end-diastolic pressure-volume relationships were assessed by temporarily occluding the preload line. Different steady-state PVA-MVo(2) relationships were obtained by changing the loading conditions (pre- and afterload) of the heart. There were no apparent changes in baseline cardiac performance or contractile efficiency (slope of the PVA-MVo(2) regression line) in response to the elevation of the perfusate FA concentration. However, all hearts (n = 8) showed an increase in the y-intercept of the PVA-MVo(2) regression line after elevation of the palmitate concentration, indicating an FA-induced increase in the unloaded MVo(2). Therefore, in the present model, unloaded MVo(2) is not independent of metabolic substrate. This is, to our knowledge, the first report of a PVA-MVo(2) relationship in ex vivo perfused murine hearts, using a pressure-volume catheter. The methodology can be an important tool for phenotypic assessment of the relationship among metabolism, contractile performance, and cardiac efficiency in various mouse models.  相似文献   

9.
Carotid body (CB) type I cell hypoxia-sensing function is assumed to be based on potassium channel inhibition. Subsequent membrane depolarization initiates an intracellular calcium increase followed by transmitter release for excitation of synapses with linked nerve endings. Several reports, however, contradict this generally accepted concept by showing that type I cell oxygen-sensing properties vary significantly depending on the method of their isolation. We report therefore for the first time noninvasive mapping of the oxygen-sensing properties of type I cells within the intact adult mouse CB ex vivo by using multifocal Nipkow disk-based imaging of oxygen-, calcium- and potential-sensitive cellular dyes. Characteristic type I cell clusters were identified in the compact tissue by immunohistochemistry because of their large cell nuclei combined with positive tyrosine hydroxylase staining. The cellular calcium concentrations in these cell clusters either increased or decreased in response to reduced tissue oxygen concentrations. Under control conditions, cellular potential oscillations were uniform at ~0.02 Hz. Under hypoxia-induced membrane depolarization, these oscillations ceased. Simultaneous increases and decreases in potential of these cell clusters resulted from spontaneous burstlike activities lasting ~1.5 s. type I cells, identified during the experiments by cluster formation in combination with large cell nuclei, seem to respond to hypoxia with heterogeneous kinetics.  相似文献   

10.
Plant responses to mechanical stress (e.g. wind or touch) involve a suite of physiologic and developmental changes, collectively known as thigmomorphogenesis, including reductions in height increment, Young's modulus of stems, shoot growth, and seed production, and increased stem girth and root growth. A role of the phytohormone ethylene in thigmomorphogenesis has been proposed but the extent of this involvement is not entirely clear. To address this issue, wild-type (WT) and ethylene-insensitive transgenic (Tetr) tobacco ( Nicotianum tabacum ) plants were subjected to three levels of mechanical stress: 0, 25 and 75 daily flexures. Flexed plants produced shorter, thicker stems with a lower Young's modulus than non-flexed ones, and these responses occurred independently of genotype. This suggests that ethylene does not play a role in thigmomorphogenesis-related changes in stem characteristics in tobacco. The effect of mechanical stress on dry mass increment (growth), on the other hand, differed between the genotypes: in the WT plants, shoot growth but not root growth was reduced under mechanical stress, resulting in reduced total growth and increased root mass fractions. In the Tetr plants, neither shoot nor root growth were affected. This suggests that ethylene is involved in the inhibition of tobacco shoot growth under mechanical stress.  相似文献   

11.
In humans adapted for a long time to various conditions—cold, heat, and physical exercise—differently directed changes in temperature sensitivity are observed. During long-term adaptation of humans to cold, a decrease in cold sensitivity is observed. Vice versa, in humans adapted to a hot climate, sensitivity to heat is decreased. Prolonged physical exercise does not change the sensitivity to heat but considerably increases the sensitivity to cold. Some mechanisms and the role of noradrenaline, the postganglionic neurotransmitter of the sympathetic nervous system, in the adaptive processes of a change in temperature sensitivity are considered.  相似文献   

12.
13.
The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ~50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation.  相似文献   

14.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Fourteen male patients with periodontitis and 10 patients free of periodontitis were included in the study. The concentrations of testosterone (T), calcium (Ca), magnesium (Mg), and zinc (Zn) were measured in serum and parotid saliva. Patients with periodontitis had increased Ca and decreased Zn serum levels, and they had decreased Ca and increased T levels in parotid saliva. Furthermore, there was a low correlation between parotid saliva T and Mg levels in the patients with periodontitis (r = 0.61, n = 14, t = 2.663, p less than 0.005), and there is an inverse relationship between serum and parotid saliva Mg levels (r = - 0.58, n = 14, t = 2.468, p less than 0.05).  相似文献   

16.
Studies were conducted in C57BL/6N Crj male mice and in cultured hepatocytes to clarify the relationship between galactosamine (GaIN) induced apoptosis and [Ca2+]i kinetics. Chlorpromazine (CPZ), a Ca(2+)-calmodulin antagonist, and verapamil (VR), a Ca(2+)-channel blocker each inhibited GaIN-induced DNA fragmentation and the appearance of apoptotic bodies. The kinetics of calcium uptake were evaluated using a calcium analyzer with the acetoxymethyl ester of fura-PE3 (fura-PE3/AM, 2.5 microM) as the calcium reporter. An increase in [Ca2+]i was detected in the cultured hepatocytes within 3 hours after treatment with 20 mM GaIN; this increase was inhibited by pretreatment with either 20 microM CPZ or 30 microM VR. Ca2+ imaging by confocal laser scanning microscopy showed that increase in [Ca2+]i after treatment with GaIN was initially localized around nuclei, while [Ca2+]i signals were later diffuse and observed throughout the cytoplasm. The activities of lactate dehydrogenase (LDH) and serum glutamate-pyruvate transaminase (sGPT), used as indicators of plasma membrane damage and leakage, however, were not reduced by pretreatment with CPZ or VR. From these findings, we infer that the DNA fragmentation in GaIN-induced hepatocyte apoptosis is associated with an elevation in the perinuclear concentration of Ca2+, but GaIN-induced necrotic cell death is triggered through pathway(s) that are insensitive to blockage of Ca2+ influx and therefore appear to occur independently of elevation in [Ca2+]i. These results help to clarify the role of calcium flux in hepatocyte apoptosis and necrosis induced by exposure to hepatotoxins in vivo and in vitro.  相似文献   

17.
Novel diphenylpiperazine derivatives were synthesized and evaluated for their inhibitory activity against T-type calcium channel by whole-cell patch clamp recordings on HEK293 cells. Among the test compounds, 2 and 3d were effective in decreasing the response to formalin in both the first and second phases and demonstrated antiallodynic effects in a rat model of neuropathic pain.  相似文献   

18.
To elucidate the action of tentative endogenous Ca2+ channel activator, endothelin (ET)-1, on a voltage-dependent Ca2+ channel in the heart, a dihydropyridine (DHP)-binding protein was solubilized from porcine ventricular muscle, partially purified by wheat germ agglutinin-affinity chromatography and reconstituted into proteoliposomes. Ca2+ flux into the proteoliposomes was determined using a fluorescent probe, Quin-2. The initial Ca2+ entry rate was dose-dependently activated by either a K(+)-depolarization or a synthetic Ca2+ channel agonist, Bay K8644, and inhibited by several Ca2+ entry blockers or cadmium ions. Using the same reconstituted system, it was demonstrated that sufficient dose of ET-1 yielded no effect on the Ca2+ channel function, indicating that the ET-1 action was not directly mediated by the voltage-dependent, DHP-sensitive Ca2+ channel.  相似文献   

19.
In order to clarify the role of the system that generates and degrades cyclic AMP during the initiation of motility of trout sperm, short-term changes in levels of intraspermatozoal cyclic AMP, adenylate cyclase, and phosphodiesterase were measured. Levels of cyclic AMP and the activity of adenylate cyclase increased and reached a maximum level 1 sec after transfer of sperm to K+-free medium, where they became motile, and then decreased rapidly. However, there were no changes in either parameter in sperm which remained immotile in K+-rich medium. In addition, an increase in the activity of phosphodiesterase was observed 4 sec later than the increase in levels of cyclic AMP and adenylate cyclase. These findings suggest that a very rapid change in the level of intracellular cyclic AMP occurs within 1 sec, at the moment of spawning, by the activation of adenylate cyclase and phosphodiesterase, and regulates the initiation of trout sperm motility.  相似文献   

20.

Background

Biomarkers of inflammation and adiponectin are associated with cardiovascular autonomic neuropathy (CAN) in cross-sectional studies, but prospective data are scarce. This study aimed to assess the associations of biomarkers of subclinical inflammation and adiponectin with subsequent changes in heart rate (HR) and heart rate variability (HRV) in non-diabetic and diabetic individuals.

Methods

Data are based on up to 25,050 person-examinations for 8469 study participants of the Whitehall II cohort study. Measures of CAN included HR and several HRV indices. Associations between baseline serum levels of high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, IL-1 receptor antagonist (IL-1Ra) and adiponectin and 5-year changes in HR and six HRV indices were estimated using mixed-effects models adjusting for age, sex, ethnicity, body mass index (BMI), metabolic covariates and medication. A modifying effect of diabetes was tested.

Results

Higher levels of IL-1Ra were associated with higher increases in HR. Additional associations with measures of HRV were observed for hsCRP, IL-6 and IL-1Ra, but these associations were explained by BMI and other confounders. Associations between adiponectin, HR and HRV differed depending on diabetes status. Higher adiponectin levels were associated with more pronounced decreases in HR and increases in three measures of HRV reflecting both sympathetic and vagal activity, but these findings were limited to individuals with type 2 diabetes.

Conclusions

Higher IL-1Ra levels appeared as novel risk marker for increases in HR. Higher adiponectin levels were associated with a more favourable development of cardiovascular autonomic function in individuals with type 2 diabetes independently of multiple confounders.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号