首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Controlled generation of reactive oxygen species orchestrates numerous physiological signaling events (Finkel, T. (2011) Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15). A major cellular target of reactive oxygen species is the thiol side chain (RSH) of Cys, which may assume a wide range of oxidation states (i.e. −2 to +4). Within this context, Cys sulfenic (Cys-SOH) and sulfinic (Cys-SO2H) acids have emerged as important mechanisms for regulation of protein function. Although this area has been under investigation for over a decade, the scope and biological role of sulfenic/sulfinic acid modifications have been recently expanded with the introduction of new tools for monitoring cysteine oxidation in vitro and directly in cells. This minireview discusses selected recent examples of protein sulfenylation and sulfinylation from the literature, highlighting the role of these post-translational modifications in cell signaling.  相似文献   

2.
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.  相似文献   

3.
CrtJ from Rhodobacter capsulatus is a regulator of genes involved in the biosynthesis of haem, bacteriochlorophyll, carotenoids as well as structural proteins of the light harvesting‐II complex. Fluorescence anisotropy‐based DNA‐binding analysis demonstrates that oxidized CrtJ exhibits ~ 20‐fold increase in binding affinity over that of reduced CrtJ. Liquid chromatography electrospray tandem ionization mass spectrometric analysis using DAz‐2, a sulfenic acid (–SOH)‐specific probe, demonstrates that exposure of CrtJ to oxygen or to hydrogen peroxide leads to significant accumulation of a sulfenic acid derivative of Cys420 which is located in the helix–turn–helix (HTH) motif. In vivo labelling with 4‐(3‐azidopropyl)cyclohexane‐1,3‐dione (DAz‐2) shows that Cys420 also forms a sulfenic acid modification in vivo when cells are exposed to oxygen. Moreover, a Cys420 to Ala mutation leads to a ~ 60‐fold reduction of DNA binding activity while a Cys to Ser substitution at position 420 that mimics a cysteine sulfenic acid results in a ~ 4‐fold increase in DNA binding activity. These results provide the first example where sulfenic acid oxidation of a cysteine in a HTH‐motif leads to differential effects on gene expression.  相似文献   

4.
The MarR/DUF24‐type repressor YodB controls the azoreductase AzoR1, the nitroreductase YodC and the redox‐sensing regulator Spx in response to quinones and diamide in Bacillus subtilis. Previously, we showed using a yodBCys6‐Ala mutant that the conserved Cys6 apparently contributes to the DNA‐binding activity of YodB in vivo. Here, we present data that mutation of Cys6 to Ser led to a form of the protein that was reduced in redox‐sensing in response to diamide and 2‐methylhydroquinone (MHQ) in vivo. DNA‐binding experiments indicate that YodB is regulated by a reversible thiol‐modification in response to diamide and MHQ in vitro. Redox‐regulation of YodB involves Cys6‐Cys101' intermolecular disulfide formation by diamide and quinones in vitro. Diagonal Western blot analyses confirm the formation of intersubunit disulfides in YodB in vivo that require the conserved Cys6 and either of the C‐terminal Cys101' or Cys108' residues. This study reveals a thiol‐disulfide switch model of redox‐regulation for the YodB repressor to sense electrophilic compounds in vivo.  相似文献   

5.
6.
The regB gene, from the bacteriophage T4, codes for an endoribonuclease that controls the expression of a number of phage early genes. The RegB protein cleaves its mRNA substrates with an almost absolute specificity in the middle of the tertranucleotide GGAG, making it a unique well-defined restriction endoribonuclease. This striking protein has no homology to any known RNase and its catalytic mechanism has never been investigated. Here, we show, using 31P nuclear magnetic resonance (NMR), that RegB produces a cyclic 2′,3′-phosphodiester product. In order to determine the residues crucial for its activity, we prepared all the histidine-to- alanine point mutants of RegB. The activity of these mutants was characterized both in vivo and in vitro. In addition, their binding capability was quantified by surface plasmon resonance and their structural integrity was probed by 1H/15N NMR correlation spectroscopy. The results obtained show that only the H48A and the H68A substitutions significantly reduce RegB activity without changing its ability to bind the substrate or affecting its overall structure. Altogether, our results define RegB as a new cyclizing RNase and present His48 and His68 as potent catalytic residues. The effect of the in vivo selected R52L mutation is also described and discussed.  相似文献   

7.
In stressed plants, the reactive oxygen species (ROS) levels rise. Key to ROS signaling research are detection and identification of the protein cysteine sulfenylation (-SOH), the ROS-mediated oxidative product of a thiol (-SH). Arabidopsis thaliana seedlings were stressed with hydrogen peroxide (H2O2) and the sulfenylated proteins were tagged with dimedone. Dimedone-tagged sulfenic acid proteins were visualized on a two-dimensional electrophoresis (2DE) immunoblot with an anticysteine sulfenic acid antibody and were subsequently detected by mass spectrometry. We optimized the detection method for protein sulfenylation in Arabidopsis. We conclude that dimedone can penetrate the cell wall, does not stress plants, and can “read” the changes in the protein sulfenylation pattern under oxidative stress. We observed that the number of sulfenylated proteins in plants treated with 10 mM H2O2 was higher than that in untreated plants. A total of 39 sulfenylated protein spots were found on 2DE immunoblots. By means of mass spectrometry, 11 sulfenylated proteins were discovered involved in primary metabolism, redox regulation, translation and signaling pathways. Hence, by combining an immunochemical 2DE strategy with mass spectrometry, we were able to identify sulfenylated proteins in H2O2-stressed Arabidopsis seedlings. The sulfenylated proteins can be considered for further validation as redox regulators in plants.  相似文献   

8.
Oxidative damage to the sulfur-containing amino acids, methionine and cysteine, is a major concern in biotechnology and medicine. alpha1-Antitrypsin, which is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors, contains nine methionines and a single cysteine in its primary sequence. Although it is known that methionine oxidation in the protein active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of its unpaired thiol, Cys-232. In this study, the thiol-modifying reagent NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole) was used to label peroxide-modified alpha1-antitrypsin and demonstrate that the Cys-232 in vitro oxidation pathway begins with a stable sulfenic acid intermediate and is followed by the formation of sulfinic and cysteic acid in successive steps. pH-dependent reactivity with hydrogen peroxide showed that Cys-232 has a pK(a) of 6.86 +/- 0.05, a value that is more than 1.5 pH units lower than that of a typical protein thiol. pH-induced conformational changes in the region surrounding Cys-232 were also examined and indicate that mildly acidic conditions induce a conformation that enhances Cys-232 reactivity. In summary, this work provides new insights into alpha1-antitrypsin reactivity in oxidizing environments and shows that a unique structural environment renders its unpaired thiol, Cys-232, its most reactive amino acid.  相似文献   

9.
Rhodobacter capsulatus regulates many metabolic processes in response to the level of environmental oxygen and the energy state of the cell. One of the key global redox regulators of the cell's metabolic physiology is the sensor kinase RegB that controls the synthesis of numerous energy generation and utilization processes. In this study, we have succeeded in purifying full-length RegB containing six transmembrane-spanning elements. Exogenous addition of excess oxidized coenzyme Q1 is capable of inhibiting RegB autophosphorylation approximately 6-fold. However, the addition of reduced coenzyme Q1 exhibits no inhibitory effect on kinase activity. A ubiquinone-binding site, as defined by azidoquinone photo affinity cross-linking, was determined to lie within a periplasmic loop between transmembrane helices 3 and 4 that contains a fully conserved heptapeptide sequence of GGXXNPF. Mutation of the phenylalanine in this heptapeptide renders RegB constitutively active in vivo, indicating that this domain is responsible for sensing the redox state of the ubiquinone pool and subsequently controlling RegB autophosphorylation.  相似文献   

10.
The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress.  相似文献   

11.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

12.
Heme is a required prosthetic group in many electron transfer proteins and redox enzymes. The human BK channel, which is a large-conductance Ca2+ and voltage-activated K+ channel, is involved in the hypoxic response in the carotid body. The BK channel has been shown to bind and undergo inhibition by heme and activation by CO. Furthermore, evidence suggests that human heme oxygenase-2 (HO2) acts as an oxygen sensor and CO donor that can form a protein complex with the BK channel. Here we describe a thiol/disulfide redox switch in the human BK channel and biochemical experiments of heme, CO, and HO2 binding to a 134-residue region within the cytoplasmic domain of the channel. This region, called the heme binding domain (HBD) forms a linker segment between two Ca2+-sensing domains (called RCK1 and RCK2) of the BK channel. The HBD includes a CXXCH motif in which histidine serves as the axial heme ligand and the two cysteine residues can form a reversible thiol/disulfide redox switch that regulates affinity of the HBD for heme. The reduced dithiol state binds heme (Kd = 210 nm) 14-fold more tightly than the oxidized disulfide state. Furthermore, the HBD is shown to tightly bind CO (Kd = 50 nm) with the Cys residues in the CXXCH motif regulating affinity of the HBD for CO. This HBD is also shown to interact with heme oxygenase-2. We propose that the thiol/disulfide switch in the HBD is a mechanism by which activity of the BK channel can respond quickly and reversibly to changes in the redox state of the cell, especially as it switches between hypoxic and normoxic conditions.  相似文献   

13.
14.

Background

Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods.

Scope of review

This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered.

Major conclusions

Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins.

General significance

Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

15.
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.  相似文献   

16.
BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes.  相似文献   

17.
Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, representing a new type of post-translational modification formerly undocumented. The level of these proteins is increased by oxidative stress. We attribute the accumulation of such proteins to the selective inactivation of GspSA amidase activity. X-ray crystallography and a chemical modification study indicated that the catalytic cysteine thiol of the GspSA amidase domain is transiently inactivated by H2O2 oxidation to sulfenic acid, which is stabilized by a very short hydrogen bond with a water molecule. We propose a set of reactions that explains how the levels of Gsp and Gsp S-thiolated proteins are modulated in response to oxidative stress. The hypersensitivities of GspSA and GspSA/glutaredoxin null mutants to H2O2 support the idea that GspSA and glutaredoxin act synergistically to regulate the redox environment of E. coli.  相似文献   

18.

Background

Proteins are extremely reactive to oxidants and should represent a potential target of instable reactive oxygen. This may represent a problem for plasma proteins since they may be directly modified in vivo in a compartment where antioxidant enzymatic systems are scarcely represented. On the other hand, it is possible that some plasma components have evolved over time to guarantee protection, in which case they can be considered as anti-oxidants.

Scope of review

To present and discuss main studies which addressed the role of albumin in plasma antioxidant activity mainly utilizing in vitro models of oxidation. To present some advances on structural features of oxidized albumin deriving from studies carried out on in vitro models as well as albumin purified in vivo from patients affected by clinical conditions characterized by oxidative stress.

Major conclusions

There are different interaction with HOCl and chloramines. In the former case, HOCl produces an extensive alteration of 238Trp and 162Tyr, 425Tyr, 47Tyr, while thiol groups are only partially involved. Chloramines are extremely reactive with the unique free SH group of albumin (34Cys) with the formation of sulfenic and sulfinic acid as intermediates and sulfonic acid as end-product. Oxidized albumin has a modified electrical charge for the addition of an acidic residue and presents α-helix and random coil reorganization with subtle changes in domain orientation.

General significance

Albumin, is the major antioxidants in plasma with a concentration (0.8 mM) higher than other antioxidants by an exponential factor. Functional and protective roles in the presence of oxidative stress must be defined. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

19.
20.
Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号