首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

3.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

4.
In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection.  相似文献   

5.
Nucleotide-binding oligomerization domain-2 (NOD2) is an innate immune receptor that recognizes peptidoglycan-derived muramyl dipeptide from intracellular bacteria and triggers proinflammatory signals. In this study, we sought to evaluate the role played by this receptor during early and late stages of infection with Mycobacterium avium in mice. We demonstrated that NOD2 knockout (KO) animals were able to control M. avium infection similarly to wild-type mice at all time points studied, even though IL-12 and TNF-α production was impaired in NOD2-deficient macrophages. At 100 days following infection with this bacterium, but not at 30 days post-infection, NOD2-deficient mice showed significantly diminished production of IFN-γ, as confirmed by reduced accumulation of IFN-γ and IL-12 mRNA in the spleens of KO mice. Additionally, a reduction in the size and in the number of lymphocytes/granulocytes of hepatic granulomas from NOD2 KO animals was observed only during late time points of M. avium infection. Taken together, these data demonstrate that NOD2 regulates type-1 cytokine responses to M. avium but is not required for the control of infection with this bacterium in vivo.  相似文献   

6.
This study was designed to determine whether the 24-h rhythms of clock gene expression and vascular smooth muscle (VSM) contractile responses are altered in type 2 diabetic db/db mice. Control and db/db mice were euthanized at 6-h intervals throughout the day. The aorta, mesenteric arteries, heart, kidney, and brain were isolated. Clock and target gene mRNA levels were determined by either real-time PCR or in situ hybridization. Isometric contractions were measured in isolated aortic helical strips, and pressor responses to an intravenous injection of vasoconstrictors were determined in vivo using radiotelemetry. We found that the 24-h mRNA rhythms of the following genes were suppressed in db/db mice compared with control mice: the clock genes period homolog 1/2 (Per1/2) and cryptochrome 1/2 (Cry1/2) and their target genes D site albumin promoter-binding protein (Dbp) and peroxisome proliferator-activated receptor-γ (Pparg) in the aorta and mesenteric arteries; Dbp in the heart; Per1, nuclear receptor subfamily 1, group D, member 1 (Rev-erba), and Dbp in the kidney; and Per1 in the suprachiasmatic nucleus. The 24-h contractile variations in response to phenylephrine (α(1)-agonist), ANG II, and high K(+) were significantly altered in the aortas from db/db mice compared with control mice. The diurnal variations of the in vivo pressor responses to phenylephrine and ANG II were lost in db/db mice. Moreover, the 24-h mRNA rhythms of the contraction-related proteins Rho kinase 1/2, PKC-potentiated phosphatase inhibitory protein of 17 kDa, calponin-3, tropomyosin-1/2, and smooth muscle protein 22-α were suppressed in db/db mice compared with control mice. Together, our data demonstrated that the 24-h rhythms of clock gene mRNA, mRNA levels of several contraction-related proteins, and VSM contraction were disrupted in db/db mice, which may contribute to the disruption of their blood pressure circadian rhythm.  相似文献   

7.
Je HD  Sohn UD 《Molecules and cells》2007,23(2):175-181
The present study was undertaken to determine whether SM22alpha participates in the regulation of vascular smooth muscle contractility using SM22alpha knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from SM22alpha-deficient mice (SM22(-/-LacZ)) displayed an almost three-fold increase in the level of SM22beta protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. Ca2+-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the SM22alpha-deficient mice, whereas in the presence of Ca2+ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the SM22alpha-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of SM22alpha in the regulation of Ca2+-independent vascular contractility.  相似文献   

8.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB2 cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB2 receptors in the brain need to be clarified. The aim of our work was to study the μ-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB2 receptor antagonist SR144528 in brainstem of mice deficient in either CB1 or CB2 receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB2 cannabinoid antagonist SR144528, suggesting a CB2 receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [35S]GTPγS binding assay to analyze the capability of μ-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB1 wild-type and CB1 knockout mice after a single injection of SR144528 at 0.1 mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB1 wild-type and CB1 knockout mice. In vitro addition of 1 μM SR144528 caused a decrease in the maximal stimulation of DAMGO in [35S]GTPγS binding assays in CB2 wild-type brainstem membranes whereas no significant changes were observed in CB2 receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB2 cannabinoid receptors.  相似文献   

9.
The coagulation protease Factor Xa (Xa)(1) triggers a variety of cellular responses that may be important for inflammatory reactions to tissue injury. Protease-activated receptors (PAR1, PAR2, and PAR4) can mediate Xa signaling in heterologous expression systems. However, other candidate Xa receptors have been described, and the extent to which one or more PARs account for Xa signaling in relevant differentiated cells is unknown. We examined Xa signaling in endothelial cells from wild-type and PAR-deficient mice. Wild-type endothelial cells responded to agonists for PAR1, PAR2, and PAR4. Relative to wild-type, Xa-triggered phosphoinositide hydrolysis was reduced by 60-75% in Par2 -/- endothelial cells, by 20-30% in Par1 -/- endothelial cells, and by approximately 90% in Par2 -/- endothelial cells treated with a PAR1 antagonist. Similar results were obtained when ERK1/2 phosphorylation was used to assess Xa signaling. Thus PAR2 is the main endogenous Xa receptor in these endothelial cell preparations and, together, PAR2 and PAR1 appear to account for approximately 90% of endothelial Xa signaling. By contrast, in fibroblasts, PAR1 by itself accounted for virtually all Xa-induced phosphoinositide hydrolysis. This information is critical for the design and interpretation of knockout mouse studies to probe the possible roles of Xa signaling in vivo.  相似文献   

10.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

11.
Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptors. There are two types of PAR2 signaling pathways: Canonical G-protein signaling and β-arrestin signaling. Although PAR2 signaling has been reported to aggravate hepatic steatosis, the exact mechanism is still unclear, and the role of PAR2 in autophagy remains unknown. In this study, we investigated the regulatory role of PAR2 in autophagy during high-fat diet (HFD)-induced hepatic steatosis in mice. Increased protein levels of PAR2 and β-arrestin-2 and their interactions were detected after four months of HFD. To further investigate the role of PAR2, male and female wild-type (WT) and PAR2-knockout (PAR2 KO) mice were fed HFD. PAR2 deficiency protected HFD-induced hepatic steatosis in male mice, but not in female mice. Interestingly, PAR2-deficient liver showed increased AMP-activated protein kinase (AMPK) activation with decreased interaction between Ca2+/calmodulin-dependent protein kinase kinase β (CAMKKβ) and β-arrestin-2. In addition, PAR2 deficiency up-regulated autophagy in the liver. To elucidate whether PAR2 plays a role in the regulation of autophagy and lipid accumulation in vitro, PAR2 was overexpressed in HepG2 cells. Overexpression of PAR2 decreased AMPK activation with increased interaction of CAMKKβ with β-arrestin-2 and significantly inhibited autophagic responses in HepG2 cells. Inhibition of autophagy by PAR2 overexpression further exacerbated palmitate-induced lipid accumulation in HepG2 cells. Collectively, these findings suggest that the increase in the PAR2-β-arrestin-2-CAMKKβ complex by HFD inhibits AMPK-mediated autophagy, leading to the alleviation of hepatic steatosis.  相似文献   

12.
Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-β and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1β secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1β secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes.  相似文献   

13.
Estrogen replacement increases risk of venous thrombosis. In this study, we determined responses in vitro to platelets and platelet products in veins from adult male and intact and ovariectomized female pigs. When contracted with prostaglandin F(2alpha), platelets (25,000 platelets/microl) caused relaxation in veins with endothelium. Higher numbers of platelets caused contraction in veins with and without endothelium. In veins without endothelium, contractions were greater in veins from male than in veins from female pigs, and contractions in intact female pig veins were greater than in ovariectomized females pig veins. Platelet products 5-hydroxytryptamine and thromboxane (analog U-46619) caused comparable contractions in all veins; contractions to prostacyclin were less in veins from intact female pigs. ADP caused comparable endothelium-dependent relaxations in all groups. These relaxations were increased by indomethacin in veins from intact males and females; with inhibition of nitric oxide, relaxations were comparable in all groups. These results suggest that venous responses to platelets vary with sex and presence of ovaries in female pigs. These variations reflect differences in type and quantity of substances released from platelets as well as the sensitivity of the smooth muscle to some vasoactive substances. In addition, products of cyclooxygenase may reduce endothelium-dependent relaxations in veins.  相似文献   

14.
Delayed onset of inflammation in protease-activated receptor-2-deficient mice   总被引:25,自引:0,他引:25  
Endothelial surface expression of P-selectin and subsequent leukocyte rolling in venules can be induced by mast cell-derived histamine and binding of thrombin to protease-activated receptor-1 (PAR1). We hypothesized that activation of endothelial PAR2 by mast cell tryptase or other proteases also contributes to inflammatory responses. Leukocyte rolling flux and rolling velocity were assessed by intravital microscopy of the cremaster muscles of wild-type mice following perivenular micropipette injections of a control (LSIGRL) or PAR2-activating (SLIGRL) oligopeptide. Injection of SLIGRL increased mean rolling leukocyte flux fraction from 34 +/- 11 to 71 +/- 24% (p < 0.05) and decreased mean rolling velocity from 63 +/- 29 to 32 +/- 2 micrometer/s (p < 0.05). No significant changes occurred with control peptide injection. To further evaluate the role of PAR2 in inflammatory responses, PAR2-deficient mice were generated by gene targeting and homologous recombination. Perivenular injections of SLIGRL resulted in only a small increase in rolling leukocyte flux fraction (from 21 +/- 8 to 30 +/- 2%) and no change in rolling velocity. Leukocyte rolling after surgical trauma was assessed in 9 PAR2-deficient and 12 wild-type mice. Early (0-15 min) after surgical trauma, the mean leukocyte rolling flux fraction was lower (10 +/- 3 vs 30 +/- 6%, p < 0.05) and mean rolling velocity was higher (67 +/- 46 vs 52 +/- 36 micrometer/s, p < 0.01) in PAR2-deficient compared with control mice. The defect in leukocyte rolling in PAR2-deficient mice did not persist past 30 min following surgical trauma. These results indicate that activation of PAR2 produces microvascular inflammation by rapid induction of P-selectin-mediated leukocyte rolling. In the absence of PAR2, the onset of inflammation is delayed.  相似文献   

15.
Although evidence from culture studies implicates the angiotensin II (ANG II) type 2 receptor (AT(2)R) in the regulation of growth and differentiation of arterial smooth muscle (SM) cells (SMC), the lack of its expression in adult arteries has precluded direct investigation of its role in vivo. The goal of the present study was to determine the role of AT(2)R in the control of fetal SMC growth, contractility, and differentiation during vascular development. Determination of isometric tension in fetal aortas showed potentiated ANG II-induced contraction by treatment with the selective AT(2)R antagonist PD-123319, demonstrating the presence of functional AT(2)Rs that mediate reduced force development in vascular SMC. In direct contrast to numerous cell culture studies, proliferation indexes were decreased rather than increased in aortic SMC of fetal homozygous AT(2)R knockout compared with wild-type or heterozygous knockout mice. Experiments using SMC tissues from heterozygous female AT(2)R knockout mice, which are naturally occurring chimeras for AT(2)R expression, showed that AT(2)R mRNA expression was exactly 50% of that of wild type. This indicated that loss of AT(2)R expression did not confer a selective advantage or disadvantage for SMC lineage determination and expansion. Real time RT-PCR analyses showed no significant difference in expression of SM-alpha-actin, SM myosin heavy chain, and myocardin in various SM tissues from all three genotypes, suggesting that knockout of AT(2)R had no effect on subsequent SMC differentiation. Taken together, results indicate that functional AT(2)R are expressed in fetal aorta and mediate reduced force development but do not significantly contribute to regulation of SMC differentiation.  相似文献   

16.
Proteinases can influence lung inflammation by various mechanisms, including via cleavage and activation of protease-activated receptors (PAR) such as PAR2. In addition, proteinases such as neutrophil and/or Pseudomonas-derived elastase can disarm PAR2 resulting in loss of PAR2 signaling. Currently, the role of PAR2 in host defense against bacterial infection is not known. Using a murine model of acute Pseudomonas aeruginosa pneumonia, we examined differences in the pulmonary inflammatory response between wild-type and PAR2(-/-) mice. Compared with wild-type mice, PAR2(-/-) mice displayed more severe lung inflammation and injury in response to P. aeruginosa infection as indicated by higher bronchoalveolar lavage fluid neutrophil numbers, protein concentration, and TNF-alpha levels. By contrast, IFN-gamma levels were markedly reduced in PAR2(-/-) compared with wild-type mice. Importantly, clearance of P. aeruginosa was diminished in PAR2(-/-) mice. In vitro testing revealed that PAR2(-/-) neutrophils killed significantly less bacteria than wild-type murine neutrophils. Further, both neutrophils and macrophages from PAR2(-/-) mice displayed significantly reduced phagocytic efficiency compared with wild-type phagocytes. Stimulation of PAR2 on macrophages using a PAR2-activating peptide resulted in enhanced phagocytosis directly implicating PAR2 signaling in the phagocytic process. We conclude that genetic deletion of PAR2 is associated with decreased clearance of P. aeruginosa. Our data suggest that a deficiency in IFN-gamma production and impaired bacterial phagocytosis are two potential mechanisms responsible for this defect.  相似文献   

17.
Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators such as TNF-α and ICAM-1.  相似文献   

18.
Chronic kidney diseases cause significant morbidity and mortality in the population. During renal injury, kidney-localized proteinases can signal by cleaving and activating proteinase-activated receptor-2 (PAR2), a G-protein-coupled receptor involved in inflammation and fibrosis that is highly expressed in renal tubular cells. Following unilateral ureteric obstruction, PAR2-deficient mice displayed reduced renal tubular injury, fibrosis, collagen synthesis, connective tissue growth factor (CTGF), and α-smooth muscle actin gene expression at 7 days, compared with wild-type controls. In human proximal tubular epithelial cells in vitro, PAR2 stimulation with PAR2-activating peptide (PAR2-AP) alone significantly up-regulated the expression of CTGF, a potent profibrotic cytokine. The induction of CTGF by PAR2-AP was synergistically increased when combined with transforming growth factor-β (TGF-β). Consistent with these findings, treating human proximal tubular epithelial cells with PAR2-AP induced Smad2/3 phosphorylation in the canonical TGF-β signaling pathway. The Smad2 phosphorylation and CTGF induction required signaling via both the TGFβ-receptor and EGF receptor suggesting that PAR2 utilizes transactivation mechanisms to initiate fibrogenic signaling. Taken together, our data support the hypothesis that PAR2 synergizes with the TGFβ signaling pathway to contribute to renal injury and fibrosis.  相似文献   

19.
Vascular permeability is a hallmark response to the main angiogenic factor VEGF-A and we have previously described a reduction of this response in Shb knockout mice. To characterize the molecular mechanisms responsible for this effect, endothelial cells were isolated from lungs and analyzed in vitro. Shb deficient endothelial cells exhibited less migration in a scratch wound-healing assay both under basal conditions and after vascular endothelial growth factor-A (VEGF-A) stimulation, suggesting a functional impairment of these cells in vitro. Staining for VE-cadherin and vascular endothelial growth factor receptor-2 (VEGFR-2) showed co-localization in adherens junctions and in intracellular sites such as the perinuclear region in wild-type and Shb knockout cells. VEGF-A decreased the VE-cadherin/VEGFR-2 co-localization in membrane structures resembling adherens junctions in wild-type cells whereas no such response was noted in the Shb knockout cells. VE-cadherin/VEGFR-2 co-localization was also recorded using spinning-disk confocal microscopy and VEGF-A caused a reduced association in the wild-type cells whereas the opposite pattern was observed in the Shb knockout cells. The latter expressed slightly more of cell surface VEGFR-2. VEGF-A stimulated extracellular-signal regulated kinase, Akt and Rac1 activities in the wild-type cells whereas no such responses were noted in the knockout cells. We conclude that aberrant signaling characteristics with respect to ERK, Akt and Rac1 are likely explanations for the observed altered pattern of VE-cadherin/VEGFR-2 association. The latter is important for understanding the reduced in vivo vascular permeability response in Shb knockout mice, a phenomenon that has patho-physiological relevance.  相似文献   

20.
Helicobacter pylori (H. pylori)-induced immune responses in the gastric mucosa are skewed toward T helper (Th) 1 phenotype, which is characterized by predominant production of tumor necrosis factor (TNF)-α and interferon (IFN)-γ by helper T cells. Toll-like receptors (TLRs) play an essential role in mucosal defense against microbes through the recognition of bacterial molecules. Among the members of the TLR family, TLR9 recognizes bacterial unmethylated CpG DNA sites, and signal transduction of TLR9 induces production of a variety of cytokines, including type-I IFN (IFN-α/β). We investigated the expression and role of TLR9 in H. pylori-induced gastritis in mice. Expression of TLR9 mRNA in the gastric tissue increased after infection with H. pylori. TLR9 was mainly expressed in the macrophages, dendritic cells, and CD3+ cells in the gastric mucosa. Neutrophil infiltration and the expression levels of TNF-α and IFN-γ mRNA were higher in TLR9 knockout (KO) mice than in wild-type mice at 2 and 4 months after H. pylori inoculation. These differences in inflammatory parameters between H. pylori-infected wild-type and TLR9 KO mice disappeared 6 months after H. pylori inoculation. Expression of interleukin-4 mRNA, typical Th2 cytokine, in the gastric tissue did not differ between H. pylori-infected wild-type and TLR9 KO mice. Expression level of IFN-α/β mRNA in the TLR9 KO mice was lower than that in wild-type mice by 4 months after inoculation. Administration of IFN-α reduced H. pylori infection-induced increase in neutrophil infiltration and the expression levels of TNF-α and IFN-γ mRNA in TLR9 KO mice. Our findings suggest that TLR9 signaling plays important roles in the suppression of H. pylori-induced gastritis in the early phase via downregulation of Th1-type cytokines modulated by IFN-α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号