首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

2.
3.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

4.
TNF-α-induced osteoclastogenesis is central to post-menopausal and inflammatory bone loss, however, the effect of phytoestrogens on TNF-α-induced bone resorption has not been studied. The phytoestrogens genistein, daidzein, and coumestrol directly suppressed TNF-α-induced osteoclastogenesis and bone resorption. TRAP positive osteoclast formation and resorption area were significantly reduced by genistein (10(-7) M), daidzein (10(-5) M), and coumestrol (10(-7) M), which was prevented by the estrogen antagonist ICI 182,780. TRAP expression in mature TNF-α-induced osteoclasts was also significantly reduced by these phytoestrogen concentrations. In addition, in the presence of ICI 182,780 genistein and coumestrol (10(-5) -10(-6) M) augmented TNF-α-induced osteoclast formation and resorption. However, this effect was not observed in the absence of estrogen antagonist indicating that genistein's and coumestrol's ER-dependent anti-osteoclastic action normally negates this pro-osteoclastic effect. To determine the mechanism mediating the anti-osteoclastic action we examined the effect of genistein, coumestrol, and daidzein on caspase 3/7 activity, cell viability and expression of key genes regulating osteoclast differentiation and fusion. While anti-osteoclastic phytoestrogen concentrations had no effect on caspase 3/7 activity or cell viability they did significantly reduce TNF-α-induced c-fos and NFATc1 expression in an ER dependent manner and also inhibited NFATc1 nuclear translocation. Significant decreases in NFκB and DC-STAMP levels were also noted. Interestingly, constitutive c-fos expression prevented the anti-osteoclastic action of phytoestrogens on differentiation, resorption and NFATc1. This suggests that phytoestrogens suppress TNF-α-induced osteoclastogenesis via inhibition of c-fos-dependent NFATc1 expression. Our data provides further evidence that phytoestrogens have a potential role in the treatment of post-menopausal and inflammatory bone loss directly inhibiting TNF-α-induced resorption.  相似文献   

5.
The aim of this study was to explore the ability for chondrogenic differentiation of bone marrow mesenchymal stems cells (BMSCs) induced by either cartilage-derived morphogenetic protein 1 (CDMP-1) alone or in the presence of transforming growth factor-β1 (TGF-β1) in vivo and in vitro. BMSCs and poly-lactic acid/glycolic acid copolymer (PLGA) scaffold were analyzed for chondrogenic capacity induced by CDMP-1 and TGF-β1 in vivo and in vitro. Chondrogenic differentiation of BMSCs into chondrocytes using a high density pellet culture system was tested, whether they could be maintained in 3-D PLGA scaffold instead of pellet culture remains to be explored. Under the culture of high-density cell suspension and PLGA frame, BMSCs were observed the ability to repair cartilage defects by either CDMP-1 alone or in the presence of TGF-β1 in vitro. Then the cell-scaffold complex was implanted into animals for 4 and 8 weeks for in vivo test. The content of collagen type II and proteoglycan appeared to increase over time in the constructs of the induced groups (CDMP in the presence of TGF-β1), CDMP group and TGF group. However, the construct of the control group did not express them during the whole culture time. At 4 and 8 weeks, the collagen type II expression of the induced group was higher than the sum of TGF group and CDMP group by SSPS17.0 analysis. BMSCs and PLGA complex induced by CDMP-1 and TGF- β1 can repair cartilage defects more effectively than that induced by CDMP-1 or TGF-β1 only.  相似文献   

6.
7.
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases.  相似文献   

8.
Multipotential bone marrow mesenchymal stem cells (BMSCs) are important in maintaining the microenvironment of the bone marrow (BM). Sympathetic nerves histologically innervate the BM; however, their role remains unclear. In this study, the effects of norepinephrine on DNA synthesis and the related signaling molecules involved in rBMSCs were examined.mRNA levels of the α1-adrenergic receptor subtypes increased following norepinephrine stimulation (10−5 M for 30 min). DNA synthesis increased in dose- and time-dependent manners as determined by [3H]thymidine incorporation. Intracellular Ca2+ concentration and translocation of protein kinase C from the cytosol to the membrane were also found to be elevated in rBMSCs. Phentolamine was able to suppress translocation of PKC. Norepinephrine also induced phosphorylation of ERK1/2, which was prevented by staurosporine treatment. Pretreatment with PD98059 inhibited ERK1/2 phosphorylation and DNA synthesis in rBMSCs.These findings indicate that norepinephrine stimulates DNA synthesis via α1-adrenergic receptors and downstream Ca2+/PKC and ERK1/2 activation in rBMSCs.  相似文献   

9.
10.

Background

Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the ‘licensing’ of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ.

Methods

2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins.

Results

In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types.

Conclusions

This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.
  相似文献   

11.
12.
13.
14.
15.
16.
Epithelial-mesenchymal transition (EMT) is an important mechanism in carcinogenesis. To determine the mechanisms that are involved in the regulation of EMT, it is crucial to develop new biomarkers and therapeutic targets towards cancers. In this study, when TGFβ1 and TNFα were used to induce EMT in human lung carcinoma A549 cells, we found an increase in an epithelial cell tight junction marker, Claudin 1. We further identified that it was the TNFα and not the TGFβ1 that induced the fibroblast-like morphology changes. TNFα also caused the increase in Claudin-1 gene expression and protein levels in Triton X-100 soluble cytoplasm fraction. Down-regulation of Claudin-1, using small interfering RNA (siRNA), inhibited 75% of TNFα-induced gene expression changes. Claudin-1 siRNA effectively blocked TNFα-induced molecular functional networks related to inflammation and cell movement. Claudin-1 siRNA was able to significantly reduce TNF-enhanced cell migration and fibroblast-like morphology. Furthermore, over expression of Claudin 1 with a Claudin 1-pcDNA3.1/V5-His vector enhanced cell migration. In conclusion, these observations indicate that Claudin 1 acts as a critical signal mediator in TNFα-induced gene expression and cell migration in human lung cancer cells. Further analyses of these cellular processes may be helpful in developing novel therapeutic strategies.  相似文献   

17.
18.
19.
20.
The mechanisms that underlie the profibrotic effect of interleukin (IL)-1β are complicated and not fully understood. Recent evidence has suggested the involvement of the calcium-sensing receptor (CaSR) in tubular injury. Therefore, the current study aimed to investigate whether CaSR mediates IL-1β-induced collagen expression in cultured mouse inner medullary collecting duct cells (mIMCD3) and to determine the possible downstream signaling effector. The results showed that IL-1β significantly upregulated the expression of type I and III collagens in a concentration- and time-dependent manner. Moreover, CaSR was expressed in mIMCD3 cells, and its expression was increased by increasing the concentrations and times of IL-1β treatment. Selective inhibitors (Calhex231 or NPS2143) or the siRNA of CaSR attenuated the enhanced expression of type I and III collagens. Furthermore, IL-1β increased nuclear β-catenin protein levels and decreased cytoplasmic β-catenin expression in cells. In contrast, blockage of CaSR by the pharmacological antagonists or siRNA could partially attenuate such changes in the IL-1β-induced nuclear translocation of β-catenin. DKK1, an inhibitor of β-catenin nuclear translocation, further inhibited the expression of type I and III collagens in cells treated with IL-1β plus CaSR antagonist. In summary, these data demonstrated that IL-1β-induced collagen I and III expressions in collecting duct cells might be partially mediated by CaSR and the downstream nuclear translocation of β-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号