首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated five commercial extraction kits for their ability to recover DNA from Bacillus anthracis spores and spiked environmental samples. The kits evaluated represent the major types of methodologies which are commercially available for DNA or total nucleic acid extraction, and included the ChargeSwitch gDNA Mini Bacteria Kit, NucliSens Isolation Kit, Puregene Genomic DNA Purification Kit, QIAamp DNA Blood Mini Kit, and the UltraClean Microbial DNA Isolation Kit. Extraction methods were performed using the spores of eight virulent strains of B. anthracis. Viability testing of nucleic acid extracts showed that the UltraClean kit was the most efficient at depleting samples of live B. anthracis spores. TaqMan real-time PCR analysis revealed that the NucliSens, QIAamp and UltraClean kits yielded the best level of detection from spore suspensions. Comparisons of processed samples from spiked swabs and three powder types indicated that DNA extraction using the UltraClean kit resulted in the most consistently positive results and the lowest limit of detection. This study demonstrated that different nucleic extraction methodologies, represented here by various commercial extraction kits, differ in their ability to inactivate live B. anthracis spores as well as DNA yield and purity. In addition, the extraction method used can influence the sensitivity of real-time PCR assays for B. anthracis.  相似文献   

2.
The aim of this study was to compare the efficiency of DNA extraction from water as well as from blood samples spiked with A. fumigatus spores, using selected commercial kits. Extraction of DNA according to manufacturer's protocols was preceded by blood cells lysis and disruption of fungal cells by enzymatic digestion or bead beating. The efficiency of DNA extraction was measured by PCR using Aspergillus-specific primers and SYBR Green I dye or TaqMan probes targeting 28S rRNA gene. All methods allowed the detection of Aspergillus at the lowest tested density of water suspensions of spores (101 cells/ml). The highest DNA yield was obtained using the ZR Fungal/Bacterial DNA kit, YeastStar Genomic DNA kit, and QIAamp DNA Mini kit with mechanical cell disruption. The ZR Fungal/Bacterial DNA and YeastStar kits showed the highest sensitivity in examination of blood samples spiked with Aspergillus (100 % for the detection of 102 spores and 75 % for 101 spores). Recently, the enzymatic method ceased to be recommended for examination of blood samples for Aspergillus, thus ZR Fungal/Bacterial DNA kit and QIAamp DNA Mini kit with mechanical cell disruption could be used for extraction of Aspergillus DNA from clinical samples.  相似文献   

3.
Aim:  To evaluate commercial DNA extraction kits for their ability to isolate DNA from Yersinia pestis suspensions and spiked environmental samples.
Methods and Results:  Five commercially available DNA extraction kits were evaluated: the ChargeSwitch gDNA Mini Bacteria Kit, the IT 1-2-3 Sample DNA Purification Kit, the MasterPure Complete DNA and RNA Purification Kit, the QIAamp DNA Blood Mini Kit and the UltraClean Microbial DNA Isolation Kit. The extraction methods were performed upon six Y. pestis strains and spiked environmental specimens, including three swab types and one powder type. Taqman real-time PCR analysis revealed that the use of the MasterPure kit resulted in DNA with the most consistently positive results and the lowest limit of detection from Y. pestis suspensions and spiked environmental samples.
Conclusion:  Comparative evaluations of the five commercial DNA extraction methods indicated that the MasterPure kit was superior for the isolation of PCR-amplifiable DNA from Y. pestis suspensions and spiked environmental samples.
Significance and Impact of the Study:  The results of this study can assist diagnostic laboratories with selecting the best extraction method for processing environmental specimens for subsequent detection of Y. pestis by real-time PCR.  相似文献   

4.
Aim Comparison of manual and automatic (MagNA Pure) isolation methods of total RNA from adipose tissue with respect to its quality and recovery factor. Material 120 human subcutaneous adipose tissue samples (about 100 mg/sample) were collected from patients during surgical operations. The tissue sample was stabilized in RNAlater (QIAGEN GmbH, Germany). Methods Total RNA was extracted by the following kits: Rneasy Protect Mini, Rneasy Lipid Tissue (QIAGEN GmbH, Germany) and MagNA Pure Compact RNA Isolation (Tissue) for MagNA Pure Compact Instrument (Roche Diagnostics GmbH, Germany). Results The average RNA yields with Rneasy Lipid Tissue kits were about two-fold higher in comparison with the Rneasy Protect Mini kit. When the MagNA Pure Compact System was used, RNA yields from the same sample were more uniform compared with manual systems. It was also more convenient and less time-consuming than the manual approach. No DNA contamination of total RNA samples was detected except for samples isolated by Rneasy Protect Mini Kit. Conclusion Rneasy Lipid Tissue Kit and MagNA Pure Compact RNA Isolation Kit (Tissue) provide RNA samples of high quantity, purity and PCR amplificability. RNA samples are suitable for further processing using methods of molecular biology.  相似文献   

5.
The purity of DNA extracted from faecal samples is a key issue in the sensitivity and usefulness of biological analyses such as PCR for infectious pathogens and non-pathogens. We have compared the relative efficacy of extraction of bacterial DNA (both Gram negative and positive origin) from faeces using four commercial kits (FastDNA kit, Bio 101; Nucleospin C+T kit, Macherey-Nagal; Quantum Prep Aquapure Genomic DNA isolation kit, Bio-Rad; QIAamp DNA stool mini kit, Qiagen) and a non-commercial guanidium isothiocyanate/silica matrix method. Human faecal samples were spiked with additional known concentrations of Lactobacillus acidophilus or Bacteroides uniformis, the DNA was then extracted by each of the five methods, and tested in genus-specific PCRs. The Nucleospin method was the most sensitive procedure for the extraction of DNA from a pure bacterial culture of Gram-positive L. acidophilus (10(4) bacteria/PCR), and QIAamp and the guanidium method were most sensitive for cultures of Gram-negative B. uniformis (10(3) bacteria/PCR). However, for faecal samples, the QIAamp kit was the most effective extraction method and led to the detection of bacterial DNA over the greatest range of spike concentrations for both B. uniformis and L. acidophilus in primary PCR reactions. A difference in extraction efficacy was observed between faecal samples from different individuals. The use of appropriate DNA extraction kits or methods is critical for successful and valid PCR studies on clinical, experimental or environmental samples and we recommend that DNA extraction techniques are carefully selected with particular regard to the specimen type.  相似文献   

6.
Optimising DNA extraction from clinical samples for Burkholderia pseudomallei Type III secretion system real-time PCR in suspected melioidosis patients confirmed that urine and sputum are useful diagnostic samples. Direct testing on blood remains problematic; testing DNA extracted from plasma was superior to DNA from whole blood or buffy coat.  相似文献   

7.
B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B. pseudomallei lipopolysaccharide in blood is greater than the response to other lipopolysaccharide expressing isolates. Our findings suggest that B. pseudomallei lipopolysaccharide may play a central role in stimulating the host response in melioidosis.  相似文献   

8.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

9.

Background

Mycobacterium bovis is the aetiological agent of bovine tuberculosis (bTB), an important recrudescent zoonosis, significantly increasing in British herds in recent years. Wildlife reservoirs have been identified for this disease but the mode of transmission to cattle remains unclear. There is evidence that viable M. bovis cells can survive in soil and faeces for over a year.

Methodology/Principal Findings

We report a multi-operator blinded trial for a rigorous comparison of five DNA extraction methods from a variety of soil and faecal samples to assess recovery of M. bovis via real-time PCR detection. The methods included four commercial kits: the QIAamp Stool Mini kit with a pre-treatment step, the FastDNA® Spin kit, the UltraClean™ and PowerSoil™ soil kits and a published manual method based on phenol:chloroform purification, termed Griffiths. M. bovis BCG Pasteur spiked samples were extracted by four operators and evaluated using a specific real-time PCR assay. A novel inhibition control assay was used alongside spectrophotometric ratios to monitor the level of inhibitory compounds affecting PCR, DNA yield, and purity. There were statistically significant differences in M. bovis detection between methods of extraction and types of environmental samples; no significant differences were observed between operators. Processing times and costs were also evaluated. To improve M. bovis detection further, the two best performing methods, FastDNA® Spin kit and Griffiths, were optimised and the ABI TaqMan environmental PCR Master mix was adopted, leading to improved sensitivities.

Conclusions

M. bovis was successfully detected in all environmental samples; DNA extraction using FastDNA® Spin kit was the most sensitive method with highest recoveries from all soil types tested. For troublesome faecal samples, we have used and recommend an improved assay based on a reduced volume, resulting in detection limits of 4.25×105 cells g−1 using Griffiths and 4.25×106 cells g−1 using FastDNA® Spin kit.  相似文献   

10.
Three DNA extraction kits were used, all without preliminary procedures, then DNA extraction was preceded with freeze/thaw cycles in three versions. A lack of desired effect resulted in the application of liquid nitrogen/water bath cycles before the use of the extractions in further experiments. The effectiveness of DNA extraction was measured by PCR signal and C(T) values of real time PCR. A comparison of the efficiency of various Cryptosporidium parvum undiluted oocyst treatments prior to DNA extraction with the use of three kits has shown that the best results were obtained after extraction of DNA with the QIAamp DNA Tissue Mini Kit (T kit), preceded by triple liquid nitrogen/water bath in 100 degrees C for 2 minutes and with overnight proteinase K digestion. After extraction with the T kit, the detection limit was 50 oocysts per 200 microl when effectiveness was evaluated with PCR and 10 oocysts in the case of real time PCR.  相似文献   

11.
Methods for the extraction of PCR-quality DNA from environmental soil samples by using pairs of commercially available kits were evaluated. Coxiella burnetii DNA was detected in spiked soil samples at <1,000 genome equivalents per gram of soil and in 12 (16.4%) of 73 environmental soil samples.The detection of pathogenic organisms in the environment often relies on PCR analysis of DNA purified from environmental soil (6). For effective detection, a reliable method to obtain PCR-quality DNA from soil is necessary. Although a variety of complex techniques have been effective for specific soil samples (1-3, 7, 8), it is not clear which methods would be the best for the wide variety of samples encountered in a large-scale environmental sampling study. In addition, many published techniques would be difficult to use on a large number of samples (1-3, 7, 8).This study evaluates the abilities of commercially available DNA extraction kits to provide DNA from environmental soil samples that are suitable for PCR detection of Coxiella burnetii. C. burnetii is an obligate intracellular, Gram-negative, zoonotic pathogen and the causative agent of Q fever (5). It is classified as a category B agent of bioterrorism by the CDC.Three commercially available DNA purification kits were evaluated. Twenty different soil samples obtained from diverse locations in the southeastern United States were used for testing. These samples consisted of light sandy soil and were all initially processed through one of three DNA purification kits, the UltraClean soil DNA isolation kit (MoBio Laboratories, Carlsbad CA), the QIAamp DNA minikit (Qiagen, Valencia, CA), or the QIAamp DNA stool minikit (Qiagen), or through a combination of two of the kits used sequentially. Thus, all 20 samples were each processed through nine extraction protocols. To process soil samples, five grams of soil was mixed with 10 to 30 ml of phosphate-buffered saline (PBS) to create a homogenized slurry. Samples were mixed for 1 h at room temperature and then centrifuged for 5 min at 123 × g. The supernatant was removed and centrifuged at 20,000 × g for 15 min. The supernatant was then carefully discarded and the pellet resuspended in 1 ml of PBS.For the UltraClean soil kit, 700 μl of the resuspended soil extraction pellet was processed by the manufacturer''s alternative protocol (for maximum yields). For preps done using the QIAamp DNA minikit (tissue protocol) and the QIAamp stool kit (stool protocol), 700 μl (high volume) of the soil extract was processed according to the instructions for the particular kit. For 17 of the samples the tissue protocol and stool protocol were applied using only 200 μl of the soil extract (low volume). For all of the kits, the final elutions were performed with 55 μl of water.To further purify the products of the commercial DNA isolation kits, eluates were passed through a second round of extraction. When the MoBio UltraClean kit was used for the second round of extraction, eluates were added to the bead-containing tubes and mixed with 60 μl of solution 1 and 200 μl of the MoBio inhibitor removal solution (IRS). The manufacturer''s protocol was then followed. When the QIAamp tissue protocol was utilized for the second round of extraction, eluates were diluted to 200 μl with water and then mixed with 200 μl of buffer ATL plus 200 μl of buffer AL and then incubated at 70°C for 10 min. Following this step, the manufacturer''s protocol was followed. When the QIAamp stool protocol was used for the second round of extraction, eluates were mixed with 1.2 ml of the ASL buffer, followed by addition of the InhibitEX tablet. The manufacturer''s protocol was then followed.PCR inhibition in all of the DNA samples was then evaluated by running a quantitative PCR that detects the IS1111 gene from C. burnetii (4). PCRs were run on 200 genome equivalents of C. burnetii (strain Nine Mile Phase 1) DNA. Reaction mixtures spiked with 1-μl aliquots of the environmental DNA samples were compared to reaction mixtures spiked with 1 μl of water. Inhibition was considered present if the DNA sample caused an increase of 1 in the threshold cycle value.Use of the MoBio UltraClean procedure by itself resulted in removal of inhibitors from 35% of the samples, whereas after use of the Qiagen tissue protocol (high volume) only 4% of the samples were free of inhibition (Fig. (Fig.1).1). The Qiagen stool kit (high volume) resulted in 96% of the samples showing lack of inhibition with a low volume of soil eluate and 62.5% of the samples when the high volume was used. The DNA extracted from these three kits was then used as starting material for a subsequent DNA extraction step using the same set of three commercial kits. The MoBio UltraClean kit followed by the Qiagen stool kit eliminated inhibition in all samples, as did these two kits when used in the reverse order, even if the Qiagen stool kit was loaded with 700 μl of material (high volume). When a low volume of starting material was used, combinations of the two Qiagen kits also removed inhibitors from 100% of the samples when either the Qiagen tissue protocol was used first or the Qiagen stool protocol was used first (Fig. (Fig.1).1). The raw data for all of the inhibition assays are included as supplemental data (see Table S1 in the supplemental material).Open in a separate windowFIG. 1.Twenty environmental soil samples were used for the isolation of DNA with the indicated protocols. The samples were then tested for the ability to inhibit an IS1111 PCR with C. burnetii Nine Mile DNA as template. The percentages of samples that did not show any inhibition are indicated.To determine the yield of DNA obtained by the various protocols, nine aliquots (5 g each) of a single rich organic soil sample were each mixed with 5 ml PBS, spiked with 1 × 106 Nine Mile Phase 2 C. burnetii organisms, and then processed by the nine (high-volume) extraction protocols described above. An additional 1 × 106 Nine Mile Phase 2 C. burnetii organisms were used directly in the Qiagen tissue protocol to prepare DNA for the purpose of determining the exact amount of C. burnetii input into the assays. The quantitative IS1111 PCR assay (4) was used to determine the yield of C. burnetii DNA by using the various methods for processing soil. The yield was calculated by dividing the number of genome equivalents of C. burnetii DNA obtained from the spiked soil samples by the number of genome equivalents obtained when C. burnetii was included directly in the Qiagen tissue protocol. A common feature of all of the protocols was that they all produced a low yield of C. burnetii DNA when purified from a complex soil mixture (Fig. (Fig.2).2). The yields ranged from 0.02% to 4.3% and were variable. Although the 4.3% yield obtained when the stool kit was used alone was the highest on average, the high variability observed with these extractions suggests that most of these protocols provide similar yields. The stool kit followed by the MoBio kit clearly resulted in the lowest yield.Open in a separate windowFIG. 2.Five-gram aliquots of a single soil sample were all spiked with approximately 1 × 106 C. burnetii Phase 2 Nine Mile strain cells. The samples were then subjected to the indicated extraction protocol(s). The resulting DNA was tested for inhibition, and then the genome equivalents of C. burnetii DNA were determined by quantitative IS1111 PCR. The exact input amount of C. burnetii was determined by running an aliquot directly through the QIAamp tissue protocol followed by IS1111 PCR. Yield was calculated as genome equivalents obtained from the spiked soil samples divided by the genome equivalents obtained from the direct extraction through the QIAamp tissue protocol. Values represent the mean ± standard deviation of five experiments. Statistically significant differences (Student''s t test) were found between stool versus MoBio plus stool kits (P = 0.05), stool plus tissue versus MoBio plus stool kits (P = 0.01), and stool plus tissue versus tissue plus MoBio kits (P = 0.03). For the protocol using the stool kit followed by the MoBio kit the yield was significantly different from stool, stool plus tissue, MoBio plus tissue, and MoBio protocols (P < 0.05).Although these yields are low, the IS1111 PCR assay used to detect C. burnetii DNA amplifies a multicopy gene, and the assay can detect a single genome equivalent (4). This suggests that these protocols are adequate for the detection of C. burnetii in soil samples with 500 to 2,000 organisms per gram of soil. To test this, a 5-g sample of organic soil was spiked with 800 C. burnetii organisms per gram, and the DNA was extracted using the MoBio UltraClean kit followed by the QIAamp stool protocol. C. burnetii DNA was detected after 38 cycles using the IS1111 PCR assay.While these results are focused on soil samples, the procedures described also work well on vacuum samples and sponge wipe samples (data not shown). Based on removal of inhibitors and yield, our data suggest that the QIAamp tissue protocol (high volume) followed by the QIAamp stool protocol and the MoBio UltraClean kit followed by the QIAamp stool protocol are both suitable for extraction of DNA from environmental soil samples. To test the application of the latter method to a larger number of samples, 73 bulk soil samples from the southeastern United States were processed according to this method. Inhibition was removed from all 73 samples, and 12 of the samples were positive in the C. burnetii IS1111 PCR assay. This suggests that this practical method for extraction of PCR-quality DNA can be successfully used to detect DNA from C. burnetii and other pathogens in large numbers of environmental samples.   相似文献   

12.
Difficulty in disrupting cysts of Giardia intestinalis, a cosmopolitan protozoan parasite, decreases the yield of DNA extracted and reduces the effectiveness of the polymerase chain reaction (PCR). To improve the detection of the Giardia Glutamate Dehydrogenase (gdh) gene, we re-evaluated the effects of deoxyribonucleic acid (DNA) extraction methods. Purified and concentrated cysts from 33 fecal samples were disrupted using conventional methods, and DNA extraction was conducted using two protocols: the QIAamp Stool Mini Kit and phenol/chloroform/isoamyl alcohol (PCI). PCR amplification was successful for 12 extracted DNA samples (36%) using PCI following a glass bead and freeze/thaw pretreatment and for all 33 samples (100%) using the QIAamp Stool Mini Kit following the aforementioned pretreatment. Consequently, the pretreatment of cysts with glass beads and freeze/thaw cycles followed by extraction of DNA with the QIAamp Stool Mini kit was the more effective protocol.  相似文献   

13.
Extraction of high-quality DNA is a key step in PCR detection of Cryptosporidium and other pathogens in environmental samples. Currently, Cryptosporidium oocysts in water samples have to be purified from water concentrates before DNA is extracted. This study compared the effectiveness of six DNA extraction methods (DNA extraction with the QIAamp DNA minikit after oocyst purification with immunomagnetic separation and direct DNA extraction methods using the FastDNA SPIN kit for soil, QIAamp DNA stool minikit, UltraClean soil kit, or QIAamp DNA minikit and the traditional phenol-chloroform technique) for the detection of Cryptosporidium with oocyst-seeded samples, DNA-spiked samples, and field water samples. The study also evaluated the effects of different PCR facilitators (nonacetylated bovine serum albumin, the T4 gene 32 protein, and polyvinylpyrrolidone) and treatments (the use of GeneReleaser or ultrafiltration) for the relief from or removal of inhibitors of PCR amplification. The results of seeding and spiking studies showed that PCR inhibitors were presented in all DNA solutions extracted by the six methods. However, the effect of PCR inhibitors could be relieved significantly by the addition of 400 ng of bovine serum albumin/μl or 25 ng of T4 gene 32 protein/μl to the PCR mixture. With the inclusion of bovine serum albumin in the PCR mixture, DNA extracted with the FastDNA SPIN kit for soil without oocyst isolation resulted in PCR performance similar to that produced by the QIAamp DNA minikit after oocysts were purified by immunomagnetic separation.  相似文献   

14.
Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area.  相似文献   

15.

Background

Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis.

Methodology and Principal Findings

MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei.

Conclusions

MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients'' outcomes. In experimental melioidosis MIF impaired antibacterial defense.  相似文献   

16.

Background

The soil-dwelling saprophyte bacterium Burkholderia pseudomallei is the cause of melioidosis, a severe disease of humans and animals in southeast Asia and northern Australia. Despite the detection of B. pseudomallei in various soil and water samples from endemic areas, the environmental habitat of B. pseudomallei remains unclear.

Methodology/Principal Findings

We performed a large survey in the Darwin area in tropical Australia and screened 809 soil samples for the presence of these bacteria. B. pseudomallei were detected by using a recently developed and validated protocol involving soil DNA extraction and real-time PCR targeting the B. pseudomallei–specific Type III Secretion System TTS1 gene cluster. Statistical analyses such as multivariable cluster logistic regression and principal component analysis were performed to assess the association of B. pseudomallei with environmental factors. The combination of factors describing the habitat of B. pseudomallei differed between undisturbed sites and environmentally manipulated areas. At undisturbed sites, the occurrence of B. pseudomallei was found to be significantly associated with areas rich in grasses, whereas at environmentally disturbed sites, B. pseudomallei was associated with the presence of livestock animals, lower soil pH and different combinations of soil texture and colour.

Conclusions/Significance

This study contributes to the elucidation of environmental factors influencing the occurrence of B. pseudomallei and raises concerns that B. pseudomallei may spread due to changes in land use.  相似文献   

17.

Background

Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling.

Methods/Principal Findings

An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and ‘low-tech’ methodology that is applicable in both developed and developing countries.

Conclusions/Significance

The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei.  相似文献   

18.
Melioidosis is an emerging, potentially fatal disease caused by Burkholderia pseudomallei, which requires prolonged antibiotic treatment to prevent disease relapse. However, difficulties in laboratory diagnosis of melioidosis may delay treatment and affect disease outcomes. Isolation of B. pseudomallei from clinical specimens has been improved with the use of selective media. However, even with positive cultures, identification of B. pseudomallei can be difficult in clinical microbiology laboratories, especially in non-endemic areas where clinical suspicion is low. Commercial identification systems may fail to distinguish between B. pseudomallei and closely related species such as Burkholderia thailandensis. Genotypic identification of suspected isolates can be achieved by sequencing of gene targets such as groEL which offer higher discriminative power than 16S rRNA. Specific PCR-based identification of B. pseudomallei has also been developed using B. pseudomallei-specific gene targets such as Type III secretion system and Tat-domain protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolutionary technique for pathogen identification, has been shown to be potentially useful for rapid identification of B. pseudomallei, although existing databases require optimization by adding reference spectra for B. pseudomallei. Despite these advances in bacterial identification, diagnostic problems encountered in culture-negative cases remain largely unresolved. Although various serological tests have been developed, they are generally unstandardized “in house” assays and have low sensitivities and specificities. Although specific PCR assays have been applied to direct clinical and environmental specimens, the sensitivities for diagnosis remain to be evaluated. Metabolomics is an uprising tool for studying infectious diseases and may offer a novel approach for exploring potential diagnostic biomarkers. The metabolomics profiles of B. pseudomallei culture supernatants can be potentially distinguished from those of related bacterial species including B. thailandensis. Further studies using bacterial cultures and direct patient samples are required to evaluate the potential of metabolomics for improving diagnosis of melioidosis.  相似文献   

19.
Burkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. Isolation of B. pseudomallei from clinical samples is the “gold standard” for the diagnosis of melioidosis; results can take 3–7 days to produce. Alternatively, antibody-based tests have low specificity due to a high percentage of seropositive individuals in endemic areas. There is a clear need to develop a rapid point-of-care antigen detection assay for the diagnosis of melioidosis. Previously, we employed In vivo Microbial Antigen Discovery (InMAD) to identify potential B. pseudomallei diagnostic biomarkers. The B. pseudomallei capsular polysaccharide (CPS) and numerous protein antigens were identified as potential candidates. Here, we describe the development of a diagnostic immunoassay based on the detection of CPS. Following production of a CPS-specific monoclonal antibody (mAb), an antigen-capture immunoassay was developed to determine the concentration of CPS within a panel of melioidosis patient serum and urine samples. The same mAb was used to produce a prototype Active Melioidosis Detect Lateral Flow Immunoassay (AMD LFI); the limit of detection of the LFI for CPS is comparable to the antigen-capture immunoassay (∼0.2 ng/ml). The analytical reactivity (inclusivity) of the AMD LFI was 98.7% (76/77) when tested against a large panel of B. pseudomallei isolates. Analytical specificity (cross-reactivity) testing determined that 97.2% of B. pseudomallei near neighbor species (35/36) were not reactive. The non-reactive B. pseudomallei strain and the reactive near neighbor strain can be explained through genetic sequence analysis. Importantly, we show the AMD LFI is capable of detecting CPS in a variety of patient samples. The LFI is currently being evaluated in Thailand and Australia; the focus is to optimize and validate testing procedures on melioidosis patient samples prior to initiation of a large, multisite pre-clinical evaluation.  相似文献   

20.
Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号