首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.  相似文献   

2.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.  相似文献   

3.
The cytoplasmic tail of the measles virus (MV) fusion (F) protein is often altered in viruses which spread through the brain of patients suffering from subacute sclerosing panencephalitis (SSPE). We transferred the coding regions of F tails from SSPE viruses in an MV genomic cDNA. Similarly, we constructed and transferred mutated tail-encoding regions of the other viral glycoprotein hemagglutinin (H) gene. From the mutated genomic cDNAs, we achieved rescue of viruses that harbor different alterations of the F tail, deletions in the membrane-distal half of the H tail, and combinations of these mutations. Viruses with alterations in any of the tails spread rapidly through the monolayer via enhanced cell-cell fusion. Double-tail mutants had even higher fusion competence but slightly decreased infectivity. Analysis of the protein composition of released mutant viral particles indicated that the tails are necessary for accurate virus envelope assembly and suggested a direct F tail-matrix (M) protein interaction. Since even tail-altered glycoproteins colocalized with M protein in intracellular patches, additional interactions may exist. We conclude that in MV infections, including SSPE, the glycoprotein tails are involved not only in virus envelope assembly but also in the control of virus-induced cell fusion.  相似文献   

4.
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.  相似文献   

5.
Human signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been shown to be a cellular receptor for measles virus (MV). Chinese hamster ovary cells transfected with a mouse SLAM cDNA were not susceptible to MV and the vesicular stomatitis virus pseudotype bearing MV envelope proteins alone, indicating that mouse SLAM cannot act as an MV receptor. To determine the functional domain of the receptor, we tested the abilities of several chimeric SLAM proteins to function as MV receptors. The ectodomain of SLAM comprises the two immunoglobulin superfamily domains (V and C2). Various chimeric transmembrane proteins possessing the V domain of human SLAM were able to act as MV receptors, whereas a chimera consisting of human SLAM containing the mouse V domain instead of the human V domain no longer acted as a receptor. To examine the interaction between SLAM and MV envelope proteins, recombinant soluble forms of SLAM were produced. The soluble molecules possessing the V domain of human SLAM were shown to bind to cells expressing the MV hemagglutinin (H) protein but not to cells expressing the MV fusion protein or irrelevant envelope proteins. These results indicate that the V domain of human SLAM is necessary and sufficient to interact with the MV H protein and allow MV entry.  相似文献   

6.
7.
Measles has a host range restricted to humans and monkeys in captivity. Fresh measles virus (MV) isolates replicate readily in several human and simian B-cell lines but need a period of adaptation to other types of cells. The identification of CD46 and CD150 (SLAM) as cellular receptors for MV has helped to clarify certain aspects of the immunobiology of MV infections. We have examined the properties of an MV wild-type strain grown in the epithelial cell line Vero. After adaptation, this virus expressed high levels of both the viral glycoproteins (hemagglutinin and fusion protein) but did not induce fusion (syncytia). No changes in the amino acid sequence were found in either of the viral glycoproteins. Using several approaches, the Vero-adapted virus could not be shown to interact with CD46 either in the initiation or during the course of infection. The presence of human SLAM expressed in the Vero cells rapidly gave rise to fusion and lower yields of infectious virus.  相似文献   

8.
Subacute sclerosing panencephalitis (SSPE) virus, a measles virus (MeV) mutant, was isolated from brain tissues of a patient shortly after the clinical onset, and the entire viral genome was sequenced. The virus, named SSPE-Kobe-1, formed syncytia on B95a and Vero/SLAM cells without producing cell-free infectious virus particles, which is characteristic of SSPE virus. Phylogenetic analysis classified SSPE-Kobe-1 into genotype D3. When compared with an MeV field isolate of the same genotype (Ich-B strain), SSPE-Kobe-1 exhibited mutation rates of 0.8-1.6% at the nucleotide level in each of the proteincoding regions of the viral genome. It is noteworthy that the mutation rate of the M gene (1.2%) of SSPE-Kobe-1 was considerably lower than for other SSPE virus strains reported so far, but that the majority of the mutations (75%) were the uridine-to-cytidine biased hypermutation characteristic of the SSPE virus M gene. At the amino acid level, the viral proteins, such as N, P, C, V, M, F, H and L proteins, had point-mutations on 3, 7, 1, 4, 3, 9, 8 and 14 residues, respectively, compared with the Ich-B strain. In addition, the F and H proteins had mutated C-termini due to single-point mutations near or at the stop codons. Two of the three mutations in the M protein were Leu-to-Pro mutations, which are likely to affect the conformation and, therefore, the function of the protein. Because of the relatively small number of mutations, SSPE-Kobe-1 would be a useful tool to study genetic evolution of SSPE virus.  相似文献   

9.
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.  相似文献   

10.
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.  相似文献   

11.
Measles virus (MV) propagates mainly in lymphoid organs throughout the body and produces syncytia by using signaling lymphocyte activation molecule (SLAM) as a receptor. MV also spreads in SLAM-negative epithelial tissues by unknown mechanisms. Ubiquitously expressed CD46 functions as another receptor for vaccine strains of MV but not for wild-type strains. We here show that MV grows and produces syncytia efficiently in a human lung adenocarcinoma cell line via a SLAM- and CD46-independent mechanism using a novel receptor-binding site on the hemagglutinin protein. This infection model could advance our understanding of MV infection of SLAM-negative epithelial cells and tissues.  相似文献   

12.
We have identified the major cellular endoprotease that activates the fusion (F) glycoprotein of measles virus (MV) and have engineered a serine protease inhibitor (serpin) to target the endoprotease and inhibit the production of infectious MV. The F-protein precursor of MV was not cleaved efficiently into the mature F protein in human colon carcinoma cells lacking functional furin, indicating that furin is the major enzyme responsible for activation of the MV F protein. A human serpin alpha 1-antitrypsin variant was engineered to specifically inhibit furin. When expressed from a recombinant vaccinia virus in primate cells infected by MV, the engineered serpin (alpha 1-PDX) specifically inhibited furin-catalyzed cleavage of the F-protein precursor without affecting synthesis of other MV proteins. We generated human glioma cells stably expressing alpha 1-PDX. MV infection in these cells did not result in syncytia. The infected cells produced all the MV proteins, but the F-protein precursor remained largely uncleaved. This did not prevent virus assembly. However, the released virions contained inactive F-protein precursor rather than mature F protein, and infectious-virus titers were reduced by 3 to 4 orders of magnitude. These results show that a mature F protein is not required for the assembly of MV but is crucial for virus infectivity. The engineered serpin may offer a novel molecular antiviral approach against MV.  相似文献   

13.
Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism.  相似文献   

14.
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.Measles virus (MV), which belongs to the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. The MV genome encodes six structural proteins: the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins. The P gene also encodes two other accessory proteins, the C and V proteins. The C protein is translated from an alternative translational initiation site leading a different reading frame, and the V protein is synthesized from an edited mRNA. MV has two envelope glycoproteins, the F and H proteins. The former is responsible for envelope fusion, and the latter is responsible for receptor binding (12).Wild-type MV strains isolated in B95a cells and laboratory-adapted MV strains have distinct phenotypes (18). Wild-type MV strains can grow in B95a cells but not in Vero cells, while laboratory-adapted MV strains can grow in both B95a and Vero cells. Wild-type MV strains do not cause hemadsorption (HAd) in African green monkey red blood cells (AGM-RBC), while most of laboratory-adapted MV strains cause HAd. Importantly, wild-type MV strains are pathogenic and induce clinical signs that resemble human measles in experimentally infected monkeys while laboratory-adapted MV strains do not.One approach to identify amino acid substitutions responsible for these phenotypic differences is the comparison of a wild-type MV strain with a standard laboratory-adapted MV strain such as the Edmonston strain. With regard to the H protein, amino acid substitutions important for HAd activity and cell-cell fusion in tissue culture cells were identified by expressing the H proteins in mammalian cells (15, 21). Recently, Tahara et al. revealed that the M, H, and L proteins are responsible for efficient growth in Vero cells by constructing a series of recombinant viruses in which part of the genome of the wild-type MV was replaced with the corresponding sequences of the Edmonston strain (45, 46, 47).Another approach is the comparison of wild-type MV strains with their Vero cell-adapted MV strains. It was reported that Vero cell-adapted MV strains could be obtained by successive blind passages of wild-type MV strains in Vero cells (18, 24, 30, 43). Interestingly, in vivo and in vitro phenotypes of Vero cell-adapted MV strains were similar to those of laboratory-adapted standard MV strains (18, 19, 24, 30, 43). Comparison of the complete nucleotide sequences of the genomes of wild-type MV strains with those of Vero cell-adapted wild-type MV strains revealed amino acid substitutions in the P, C, V, M, H, and L proteins (27, 42, 48, 53).At present, these phenotypic differences are explained mainly by the receptor usage of MV. Wild-type MV strains can use signaling lymphocyte activation molecule (SLAM; also called CD150) but not CD46 as a cellular receptor, whereas laboratory-adapted MV strains can use both SLAM and CD46 as cellular receptors (7, 10, 16, 29, 56, 60).However, receptor usage per se cannot explain all of the phenotypic differences (20, 25, 48, 53). For example, recombinant Edmonston strains expressing wild-type H proteins can grow in Vero cells to some extent (17, 54). Several reports suggested the presence of the third MV receptor on Vero cells (14, 44, 54, 60). Other reports indicated the contribution of the M protein on cell-cell fusion and growth of MV in Vero cells (4, 27, 47). Recently, the unidentified epithelial cell receptor for MV was predicted in primary culture of human cells (1, 55) and several epithelial cell lines (23, 51). However, the identity of the third receptor on Vero cells and the unidentified epithelial cell receptor is not clear yet. Thus, the mechanism of Vero cell adaptation of wild-type MV is not completely understood.In order to understand the molecular mechanism of these phenotypic changes of wild-type MV strains during adaptation in Vero cells, we determined the complete nucleotide sequences of the genomes of the wild-type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strains (43) and examined the effect of individual amino acid substitutions using a mammalian cell expression system and reverse genetics. We show here that previously unrecognized new amino acid substitutions in the H and F proteins are important for MV adaptation and HAd activity.  相似文献   

15.
Corey EA  Iorio RM 《Journal of virology》2007,81(18):9900-9910
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.  相似文献   

16.
Measles virus (MV) immunosuppression is due to infection of SLAM-positive immune cells, whereas respiratory shedding and virus transmission are due to infection of nectin4-positive airway epithelial cells. The vaccine lineage MV strain Edmonston (MV-Edm) acquired an additional tropism for CD46 which is the basis of its oncolytic specificity. VSVFH is a vesicular stomatitis virus (VSV) encoding the MV-Edm F and H entry proteins in place of G. The virus spreads faster than MV-Edm and is highly fusogenic and a potent oncolytic. To determine whether ablating nectin4 tropism from VSVFH might prevent shedding, increasing its safety profile as an oncolytic, or might have any effect on CD46 binding, we generated VSVFH viruses with H mutations that disrupt attachment to SLAM and/or nectin4. Disruption of nectin4 binding reduced release of VSVFH from the basolateral side of differentiated airway epithelia composed of Calu-3 cells. However, because nectin4 and CD46 have substantially overlapping receptor binding surfaces on H, disruption of nectin4 binding compromised CD46 binding and greatly diminished the oncolytic potency of these viruses on human cancer cells. Thus, our results support continued preclinical development of VSVFH without ablation of nectin4 binding.  相似文献   

17.
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.  相似文献   

18.
The P gene of measles virus (MV) encodes the P protein and three accessory proteins (C, V, and R). However, the role of these accessory proteins in the natural course of MV infection remains unclear. For this study, we generated a recombinant wild-type MV lacking the C protein, called wtMV(C-), by using a reverse genetics system (M. Takeda, K. Takeuchi, N. Miyajima, F. Kobune, Y. Ami, N. Nagata, Y. Suzaki, Y. Nagai, and M. Tashiro, J. Virol. 74:6643-6647). When 293 cells expressing the MV receptor SLAM (293/hSLAM) were infected with wtMV(C-) or parental wild-type MV (wtMV), the growth of wtMV(C-) was restricted, particularly during late stages. Enhanced green fluorescent protein-expressing wtMV(C-) consistently induced late-stage cell rounding and cell death in the presence of a fusion-inhibiting peptide, suggesting that the C protein can prevent cell death and is required for long-term MV infection. Neutralizing antibodies against alpha/beta interferon did not restore the growth restriction of wtMV(C-) in 293/hSLAM cells. When cynomolgus monkeys were infected with wtMV(C-) or wtMV, the number of MV-infected cells in the thymus was >1,000-fold smaller for wtMV(C-) than for wtMV. Immunohistochemical analyses showed strong expression of an MV antigen in the spleen, lymph nodes, tonsils, and larynx of a cynomolgus monkey infected with wtMV but dramatically reduced expression in the same tissues in a cynomolgus monkey infected with wtMV(C-). These data indicate that the MV C protein is necessary for efficient MV replication both in vitro and in cynomolgus monkeys.  相似文献   

19.
The efficiency with which different measles virus (MV) strains enter cells through the immune cell-specific protein SLAM (CD150) or other receptors, including the ubiquitous protein CD46, may influence their pathogenicity. We compared the cell entry efficiency of recombinant MV differing only in their attachment protein hemagglutinin (H). We constructed these viruses with an additional gene expressing an autofluorescent reporter protein to allow direct detection of every infected cell. A virus with a wild-type H protein entered cells through SLAM two to three times more efficiently than a virus with the H protein of the attenuated strain Edmonston, whereas cell entry efficiency through CD46 was lower. However, these subtle differences were amplified at the cell fusion stage because the wild-type H protein failed to fuse CD46-expressing cells. We also proved formally that a mutation in H protein residue 481 (asparagine to tyrosine) results in improved CD46-specific entry. To define the selective pressure exerted on that codon, we monitored its evolution in different H protein backgrounds and found that several passages in CD46-expressing Vero cells were necessary to shift it in the majority of the MV RNA. To verify the importance of these observations for human infections, we examined MV entry into peripheral blood mononuclear cells and observed that viruses with asparagine 481 H proteins infect these cells more efficiently.  相似文献   

20.
Subacute sclerosing panencephalitis (SSPE) is caused by variants of wild-type measles virus (MV). Such MV variants lack almost completely the ability to produce cell-free progeny virus. We recently isolated an MV variant that has only three amino acid mutations (L165P,L250P and Y282H) in the M protein compared with MV field isolates of the same genotype. In the present study, we analyzed the significance of these mutations with regard to the characteristics of the M protein and progeny virus production. We found that each of the three mutations rendered the M protein insoluble in 0.5% Triton X-100 and altered its subcellular localization, either when ectopically expressed alone using a plasmid-based expression system or when expressed in the context of viral replication. Moreover, each of the three mutations markedly, but not completely, impaired the ability of MV to produce cell-free progeny virus, with the degree of impairment being the same as for all three mutations together. These results suggest the possibility that the changes in the solubility and subcellular localization of the M protein determine the ability to produce cell-free progeny virus, at least to some extent, and play a role in the pathogenicity of variants causing SSPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号