首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(12):1479-1487
Abstract

The production of reactive oxygen species, including hydrogen peroxide (H2O2), is increased in diseased blood vessels. Although H2O2 leads to impairment of the nitric oxide (NO)/soluble guanylate cyclase (sGC)/cGMP signaling pathway, it is not clear whether this reactive molecule affects the redox state of sGC, a key determinant of NO bioavailability. To clarify this issue, mechanical responses of endothelium-denuded rat external iliac arteries to BAY 41-2272 (sGC stimulator), BAY 60-2770 (sGC activator), nitroglycerin (NO donor), acidified NaNO2 (exogenous NO) and 8-Br-cGMP (cGMP analog) were studied under exposure to H2O2. The relaxant response to BAY 41-2272 (pD2: 6.79?±?0.10 and 6.62?±?0.17), BAY 60-2770 (pD2: 9.57?±?0.06 and 9.34?±?0.15) or 8-Br-cGMP (pD2: 5.19?±?0.06 and 5.24?±?0.08) was not apparently affected by exposure to H2O2. In addition, vascular cGMP production stimulated with BAY 41-2272 or BAY 60-2770 in the presence of H2O2 was identical to that in its absence. On the other hand, nitroglycerin-induced relaxation was markedly attenuated by exposing the arteries to H2O2 (pD2: 8.73?±?0.05 and 8.30?±?0.05), which was normalized in the presence of catalase (pD2: 8.59?±?0.05). Likewise, H2O2 exposure impaired the relaxant response to acidified NaNO2 (pD2: 6.52?±?0.17 and 6.09?±?0.16). These findings suggest that H2O2 interferes with the NO-mediated action, but the sGC redox equilibrium and the downstream target(s) of cGMP are unlikely to be affected in the vasculature.  相似文献   

2.
Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca(2+) oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca(2+) oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.  相似文献   

3.
The nitric oxide (NO)/cGMP pathway in the vascular smooth muscle cell (VSMC) is an important cellular signaling system for the regulation of VSMC relaxation. We present a mathematical model to investigate the underlying mechanisms of this pathway. The model describes the flow of NO-driven signal transduction: NO activation of soluble guanylate cyclase (sGC), sGC- and phosphodiesterase-catalyzed cGMP production and degradation, cGMP-mediated regulation of protein targets including the Ca2+-activated K+ (KCa) channel, and the myosin contractile system. Model simulations reproduce major NO/cGMP-induced VSMC relaxation effects, including intracellular Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation and force generation. Using the model, we examine several testable principles. 1) Rapid sGC desensitization is caused by end-product cGMP feedback inhibition; a large fraction of the steady-state sGC population is in an inactivated intermediate state, and cGMP production is limited well below maximum. 2) NO activates the K(Ca) channel with both cGMP-dependent and -independent mechanisms; moderate NO concentration affects the K(Ca) via the cGMP-dependent pathway, whereas higher NO concentration is accommodated by a cGMP-independent mechanism. 3) Chronic NO synthase inhibition may cause underexpressions of K+ channels including inward rectifier and K(Ca) channels. 4) Ca2+ desensitization of the contractile system is distinguished from Ca2+ sensitivity of myosin phosphorylation. The model integrates these interactions among the heterogeneous components of the NO signaling system and can serve as a general modeling framework for studying NO-mediated VSMC relaxation under various physiological and pathological conditions. New data can be readily incorporated into this framework for interpretation and possible modification and improvement of the model.  相似文献   

4.
cGMP is generated in endothelial cells after stimulation of soluble guanylyl cyclase (sGC) by nitric oxide (NO) or of particulate guanylyl cyclase (pGC) by natriuretic peptides (NP). We examined whether localized increases in cytosolic cGMP have distinct regulatory roles on the contraction induced by H2O2 treatment in human umbilical vein endothelial cells. cGMP concentrations and temporal dynamics were different upon NO stimulation of sGC or C-type NP (CNP) activation of pGC and did not correlate with their relaxing effects measured as planar cell surface area after H2O2 challenge. cGMP production due to sGC stimulation was always smaller and more brief than that induced by pGC stimulation with CNP, which was greater and remained elevated longer. The NO effects on cell relaxation were cGMP dependent because they were blocked by sGC inhibition with 1H-(1,2,4)Oxadiazolo(4,3-a)quinoxaline-1-one and mimicked by 8-Br-cGMP. An antagonist of the cGMP-dependent protein kinase type-I (PKG-I) also inhibited the NO-induced effects. The cell contraction induced by H2O2 produces myosin light chain (MLC) phosphorylation and NO prevented it completely, whereas CNP only produced a partial inhibition. Transfection with a dominant negative form of PKG type-I completely reversed the NO-induced effects on MLC phosphorylation, whereas it only partially inhibited the effects due to CNP. Taken together, these results demonstrate that the NO/sGC/cGMP pathway induces endothelial cell relaxation in a more efficient manner than does CNP/pGC/cGMP pathway, an effect that might be related to a selective stimulation of PKG-1 by NO-derived cGMP. Consequently, stimulated PKG-I may phosphorylate important protein targets that are necessary to inhibit the endothelial contractile machinery activated by oxidative stress. nitric oxide; C-type natriuretic peptide; myosin light chain; cGMP-dependent protein kinase type I; endothelial cell barrier dysfunction  相似文献   

5.
Nitric oxide signaling: no longer simply on or off   总被引:1,自引:0,他引:1  
Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.  相似文献   

6.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

7.
Peripheral autonomic neurones release nitric oxide (NO) upon nerve activation. However, the regulation of neuronal NO formation is poorly understood. We used the cyclic guanosine 3',5'-monophosphate (cGMP) analogue 8-Br-cGMP, the soluble guanylyl cyclase (sGC) stimulator YC-1, the phosphodiesterase inhibitor zaprinast and the sGC inhibitor ODQ to study whether the sGC/cGMP pathway is involved in regulation of neuronal NO release in nerve plexus-containing smooth muscle preparations from guinea pig colon. Electrical stimulation of the preparation evoked release of NO/NO(-)(2). In the presence of 8-Br-cGMP, YC-1 and zaprinast (all at 10(-4) M) the NO/NO(-)(2)-release increased to 152 +/- 16% (P < 0.05), 164 +/- 37% (P < 0.05) and 290 +/- 67% (P < 0.05) of controls, respectively. Conversely, ODQ (10(-5) M) decreased the evoked release of NO/NO(-)(2) to 49 +/- 7% (P < 0.05) of controls. Our data suggest that the sGC/cGMP pathway modulates NO release. Thus it is likely that NO exerts a positive feedback on its own release from peripheral autonomic neurones.  相似文献   

8.
The kidney is vulnerable to hypoxia, and substantial efforts have been made to ameliorate renal ischemic injury secondary to pathological conditions. Stimulation of the nitrate–nitrite–nitric oxide pathway is associated with renal and cardiovascular protection in disease models, but less is known about the vascular effects during renal ischemia. This study was aimed at investigating the vascular effects of nitrite in the kidney during normoxic and ischemic conditions. Using a multiwire myograph system, we assessed nitrite-mediated relaxation (10−9–10−4 mol/L) in isolated and preconstricted renal interlobar arteries from C57BL/6 mice under normal conditions (pO2 13 kPa; pH 7.4) and with low oxygen tension and low pH to mimic ischemia (pO2 3 kPa; pH 6.6). Xanthine oxidoreductase expression was analyzed by quantitative PCR, and production of reactive nitrogen species was measured by DAF-FM DA fluorescence. During normoxia significant vasodilatation (15±3%) was observed only at the highest concentration of nitrite, which was dependent on NO–sGC–cGMP signaling. The vasodilatory responses to nitrite were greatly sensitized and enhanced during hypoxia with low pH, demonstrating significant dilatation (11±1%) already in the physiological range (10−8 mol/L), with a maximum response of 27±2% at 10−4 mol/L. In contrast to normoxia, and to that observed with a classical NO donor (DEA NONOate), this sensitization was independent of sGC–cGMP signaling. Moreover, inhibition of various enzymatic systems reported to reduce nitrite in other vascular beds, i.e., aldehyde oxidase (raloxifene), aldehyde dehydrogenase (cyanamide), and NO synthase (L-NAME), had no effect on the nitrite response. However, inhibition of xanthine oxidoreductase (XOR; febuxostat or allopurinol) abolished the sensitized response to nitrite during hypoxia and acidosis. In conclusion, in contrast to normoxia, nitrite exerted potent vasorelaxation during ischemic conditions already at physiological concentrations. This effect was dependent on functional XOR but independent of classical downstream signaling by sGC–cGMP.  相似文献   

9.
Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported.  相似文献   

10.
11.
Soluble guanylate cyclase (sGC), as a nitric oxide (NO) sensor, is a critical heme-containing enzyme in NO-signaling pathway of eukaryotes. Human sGC is a heterodimeric hemoprotein, composed of a α-subunit (690 AA) and a heme-binding β-subunit (619 AA). Upon NO binding, sGC catalyzes the conversion of guanosine 5′-triphosphate (GTP) to 3′,5′-cyclic guanosine monophosphate (cGMP). cGMP is a second messenger and initiates the nitric oxide signaling, triggering vasodilatation, smooth muscle relaxation, platelet aggregation, and neuronal transmission etc. The breakthrough of the bottle neck problem for sGC-mediated NO singling was made in this study. The recombinant human sGC β1 subunit (HsGCβ619) and its truncated N-terminal fragments (HsGCβ195 and HsGCβ384) were efficiently expressed in Escherichia coli and purified successfully in quantities. The three proteins in different forms (ferric, ferrous, NO-bound, CO-bound) were characterized by UV–vis and EPR spectroscopy. The homology structure model of the human sGC heme domain was constructed, and the mechanism for NO binding to sGC was proposed. The EPR spectra showed a characteristic of five-coordinated heme-nitrosyl species with triplet hyperfine splitting of NO. The interaction between NO and sGC was investigated and the schematic mechanism was proposed. This study provides new insights into the structure and NO-binding of human sGC. Furthermore, the efficient expression system of E. coli will be beneficial to the further studies on structure and activation mechanism of human sGC.  相似文献   

12.
Nitric oxide (NO) is an important vascular modulator in the development of pulmonary hypertension. NO exerts its regulatory effect mainly by activating soluble guanylate cyclase (sGC) to synthesize cyclic guanosine monophosphate (cGMP). Exposure to hypoxia causes pulmonary hypertension. But in lung disease, hypoxia is commonly accompanied by hypercapnia. The aim of this study was to examine the changes of sGC enzyme activity and cGMP content in lung tissue, as well as the expression of inducible nitric oxide synthase (iNOS) and sGC in rat pulmonary artery after exposure to hypoxia and hypercapnia, and assess the role of iNOS–sGC–cGMP signal pathway in the development of hypoxic and hypercapnic pulmonary hypertension. Male Sprague–Dawley rats were exposed to hypoxia and hypercapnia for 4 weeks to establish model of chronic pulmonary hypertension. Weight‐matched rats exposed to normoxia served as control. After exposure to hypoxia and hypercapnia, mean pulmonary artery pressure, the ratio of right ventricle/left ventricle + septum, and the ratio of right ventricle/body weight were significantly increased. iNOS mRNA and protein levels were significantly increased, but sGC α1 mRNA and protein levels were significantly decreased in small pulmonary arteries of hypoxic and hypercapnic exposed rat. In addition, basal and stimulated sGC enzyme activity and cGMP content in lung tissue were significantly lower after exposure to hypoxia and hypercapnia. These results demonstrate that hypoxia and hypercapnia lead to the upregulation of iNOS expression, downregulation of sGC expression and activity, which then contribute to the development of pulmonary hypertension. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Soluble guanylyl cyclase (sGC) is the major physiological receptor for nitric oxide (NO) throughout the central nervous system. Three different subunits form the α11 and α21 heterodimeric enzymes that catalyze the reaction of GTP to the second messenger cGMP. Both forms contain a prosthetic heme group which binds NO and mediates activation by NO. A number of studies have shown that NO/cGMP signaling plays a major role in neuronal cell differentiation during development of the central nervous system. In the present work, we studied regulation and expression of sGC in brain of rats during postnatal development using biochemical methods. We consistently observed a surprising decrease in cerebral NO sensitive enzyme activity in adult animals in spite of stable expression of sGC subunits. Total hemoprotein heme content was decreased in cerebrum of adult animals, likely because of an increase in heme oxygenase activity. But the loss of sGC activity was not simply because of heme loss in intact heterodimeric enzymes. This was shown by enzyme activity determinations with cinaciguat which can be used to test heme occupancy in intact heterodimers. A reduction in heterodimerization in cerebrum of adult animals was demonstrated by co‐precipitation analysis of sGC subunits. This explained the observed decrease in NO sensitive guanylyl cyclase activity in cerebrum of adult animals. We conclude that differing efficiencies in heterodimer formation may be an important reason for the lack of correlation between sGC protein expression and sGC activity that has been described previously. We suggest that heterodimerization of sGC is a regulated process that changes during cerebral postnatal development because of still unknown signaling mechanisms.  相似文献   

14.

Background

Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets.

Methods

To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASPS239) by flow cytometry and Western blot. ANOVA followed by Bonferroni’s test and Student’s t-test were used as appropriate.

Results

We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite.

Conclusions

All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.
  相似文献   

15.
Nitric oxide (NO) mediates intercellular signaling through activation of its receptor, soluble guanylyl cyclase (sGC), leading to elevation of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP) levels. Through this signal transduction pathway, NO regulates a diverse range of physiological effects, from vasodilatation and platelet disaggregation to synaptic plasticity. Measurement of sGC activity has traditionally been carried out using end-point assays of cGMP accumulation or by transfection of cells with “detector” proteins such as fluorescent proteins coupled to cGMP binding domains or cyclic nucleotide gated channels. Here we report a simpler approach: the use of a fluorescently labeled substrate analog, mant-GTP (2′-O-(N-methylanthraniloyl) guanosine 5′-triphosphate), which gives an increase in emission intensity after enzymatic cyclization to mant-cGMP. Activation of purified recombinant sGC by NO led to a rapid rise in fluorescence intensity within seconds, reaching a maximal 1.6- to 1.8-fold increase above basal levels. The sGC inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), eliminated the fluorescence increase due to NO, and the synergistic activator of sGC, BAY 41-2272 (3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine), increased the rate at which the maximal fluorescence increase was attained. High-performance liquid chromatography (HPLC) confirmed the formation of mant-cGMP product. This real-time assay allows the progress of purified sGC activation to be quantified precisely and, with refinement, could be optimized for use in a cellular environment.  相似文献   

16.
Guanylate cyclase and the .NO/cGMP signaling pathway.   总被引:17,自引:0,他引:17  
Signal transduction with the diatomic radical nitric oxide (NO) is involved in a number of important physiological processes, including smooth muscle relaxation and neurotransmission. Soluble guanylate cyclase (sGC), a heterodimeric enzyme that converts guanosine triphosphate to cyclic guanosine monophosphate, is a critical component of this signaling pathway. sGC is a hemoprotein; it is through the specific interaction of NO with the sGC heme that sGC is activated. Over the last decade, much has been learned about the unique heme environment of sGC and its interaction with ligands like NO and carbon monoxide. This review will focus on the role of sGC in signaling, its relationship to the other nucleotide cyclases, and on what is known about sGC genetics, heme environment and catalysis. The latest understanding in regard to sGC will be incorporated to build a model of sGC structure, activation, catalytic mechanism and deactivation.  相似文献   

17.
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC(50) values of 42 +/- 2.9 and 3.1 +/- 0.4 microm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.  相似文献   

18.
Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO), and so mediates a wide range of effects (e.g. vasodilatation, platelet disaggregation and neural signalling) through the accumulation of cGMP and the engagement of various downstream targets, such as protein kinases and ion channels. Until recently, our understanding of sGC functioning has been derived exclusively from studies of the enzyme in tissue homogenates or in its purified form. Here, NO binds to the haem prosthetic group of sGC, triggering a conformational change and a large increase in catalytic activity. The potency (EC50) of NO appears to be about 100–200 nM. The rate of activation of sGC by NO is rapid (milliseconds) and, in the presence of excess substrate, cGMP is formed at a constant rate; on removal of NO, sGC deactivates slowly (seconds–minutes). Recent investigation of the way that sGC behaves in its natural environment, within cells, has revealed several key differences. For example, the enzyme exhibits a rapidly desensitizing profile of activity; the potency of NO is 45 nM for the minimally-desensitized enzyme but becomes higher with time; deactivation of sGC on removal of NO is 25-fold faster than the fastest estimate for purified sGC. Overall, within cells, sGC behaves in a way that is analogous to the way that classical neurotransmitter receptors operate. The properties of cellular sGC have important implications for the understanding of NO-cGMP signalling. For example, the dynamics of the enzyme means that fluctuations in the rate of NO formation, even on subsecond time scale, will result in closely synchronized sGC activity in neighbouring cells; desensitization of sGC provides an economical way of generating a cellular cGMP signal and, in concert with phosphodiesterases, provides the basis for cGMP signal diversity, allowing different targets (outputs) to be selected from a common input (NO). Thus, despite exhibiting only limited molecular heterogeneity, cellular sGC functions in a way that introduces speed, complexity, and versatility into NO-cGMP signalling pathways.  相似文献   

19.
20.
《Life sciences》1994,54(9):PL153-PL158
Thapsigargin induced endothelium-dependent relaxation and cGMP production in rat thoracic aorta, and these effects were inhibited by nitric oxide (NO) pathway inhibitors, a calmodulin inhibitor and removal of Ca2+, suggesting that NO is involved in the thapsigargin-induced relaxation. Thapsigargin may deplete Ca2+ stores in the endothelial cells by inhibiting the CA2+-ATPase, a Ca2+ pump, which in turn triggers influx of extracellular Ca2+, leading to activation of constitutive NO synthase and resultant NO generation. The NO thus formed may activate soluble guanylate cyclase to produce cGMP in the vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号