共查询到20条相似文献,搜索用时 0 毫秒
1.
Only beta-beta cross-links form when the alpha(3)(betaE(395)C)(3)gammaK(36)C (MF(1) residue numbers) double mutant subcomplex of TF(1), the F(1)-ATPase from the thermophilic Bacillus PS3, is slowly inactivated with CuCl(2) in the presence or absence of MgATP. The same slow rate of inactivation and extent of beta-beta cross-linking occur upon treatment of the alpha(3)(betaE(395)C)(3)gamma single mutant subcomplex with CuCl(2) under the same conditions. In contrast, the alpha(3)(betaE(395)C)(3)gammaR(33)C and alpha(3)(betaE(395)C)(3)gammaR(75)C double mutant subcomplexes of TF(1) are rapidly inactivated by CuCl(2) under the same conditions that is accompanied by complete beta-gamma cross-linking. The ATPase activity of each mutant enzyme containing the betaE(395)C substitution is stimulated to a much greater extent by the nonionic detergent lauryldimethylamine oxide (LDAO) than wild-type enzyme, whereas the ATPase activities of the gammaR(33)C, gammaK(36)C, and gammaR(75)C single mutants are stimulated to about the same extent as wild-type enzyme by LDAO. This indicates that the E(395)C substitution in the (394)DELSEED(400) segment of beta subunits increases propensity of the enzyme to entrap inhibitory MgADP in a catalytic site during turnover. These results are discussed in perspective with (i) the ionic track predicted from molecular dynamics simulations to operate during energy-driven ATP synthesis by MF(1), the F(1)-ATPase from bovine heart mitochondria [Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G. W., Walker, J. E., and Karplus, M. (2002) Structure 10, 921-931]; and (ii) the possibility that the betaE(395)C substitution might induce a global effect that alters affinity of noncatalytic sites for nucleotides or alters communication between noncatalytic sites and catalytic sites during ATP hydrolysis. 相似文献
2.
3.
The synthesis of enzyme-bound ATP by the F1-ATPase from the thermophilic bacterium PS3 in 50% dimethylsulfoxide 总被引:1,自引:0,他引:1
M Yoshida 《Biochemical and biophysical research communications》1983,114(3):907-912
Purified TF1 (F1-ATPase from a thermophilic bacterium PS3) synthesizes enzyme-bound ATP from medium Pi and enzyme-bound ADP in the presence of 50% dimethylsulfoxide (DMSO). Once ATP was formed on the enzyme, it was not released even after removal of DMSO and Pi from the solution. The half maximal concentration of medium Pi for ATP synthesis was 1mM. The pH optimum for enzyme-bound ATP formation was about 6.5. Under the optimum conditions, a yield of up to 0.8 mol of ATP/mol of TF1 was obtained. 相似文献
4.
Pérez-Hernández G García-Hernández E Zubillaga RA de Gómez-Puyou MT 《Archives of biochemistry and biophysics》2002,408(2):177-183
The energetics of binding of MgADP to the isolated beta subunit of F(1)-ATPase from thermophilic Bacillus (Tbeta) was characterized by high-precision isothermal titration calorimetry. The reaction was enthalpically driven, with a DeltaCp of -36cal(molK)(-1). To gain insight into the molecular basis of this small DeltaCp, we analyzed the changes in accessible surface areas (DeltaASA) between the structures of empty and MgADP-filled beta subunits, extracted from the crystal structure of bovine heart F(1). Consistent with the experimental DeltaCp, the DeltaASA was small (-775A(2)). We used a reported surface area model developed for protein reactions to calculate DeltaCp and DeltaH from DeltaASA, obtaining good agreement with the experimental values. Conversely, using the same model, a DeltaASA of -770A(2) was estimated from experimental DeltaCp and DeltaH for the Tbeta-MgADP complex. Our structural-energetic study indicates that on MgADP binding the isolated Tbeta subunit exhibits intrinsic structural changes similar to those observed in F(1). 相似文献
5.
Kato-Yamada Y 《FEBS letters》2005,579(30):6875-6878
Previously, we demonstrated ATP binding to the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus PS3 [Kato-Yamada Y., Yoshida M. (2003) J. Biol. Chem. 278, 36013]. However, whether it is a general feature of the epsilon subunit from other sources is yet unclear. Here, using a sensitive method to detect weak interactions between fluorescently labeled epsilon subunit and nucleotide, it was shown that the epsilon subunit of F1-ATPase from Bacillus subtilis also bound ATP. The dissociation constant for ATP binding at room temperature was calculated to be 2 mM, which may be suitable for sensing cellular ATP concentration in vivo. 相似文献
6.
One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar 总被引:1,自引:0,他引:1 下载免费PDF全文
Sakaki N Shimo-Kon R Adachi K Itoh H Furuike S Muneyuki E Yoshida M Kinosita K 《Biophysical journal》2005,88(3):2047-2056
F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M−1s−1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ~40 pN·nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme. 相似文献
7.
Using molecular dynamics, we study the unbinding of ATP in F(1)-ATPase from its tight binding state to its weak binding state. The calculations are made feasible through use of interpolated atomic structures from Wang and Oster [Nature 1998, 396: 279-282]. These structures are applied to atoms distant from the catalytic site. The forces from these distant atoms gradually drive a large primary region through a series of sixteen equilibrated steps that trace the hinge bending conformational change in the beta-subunit that drives rotation of gamma-subunit. As the rotation progresses, we find a sequential weakening and breaking of the hydrogen bonds between the ATP molecule and the alpha- and beta-subunits of the ATPase. This finding agrees with the "binding-zipper" model [Oster and Wang, BIOCHIM: Biophys. Acta 2000, 1458: 482-510.] In this model, the progressive formation of the hydrogen bonds is the energy source driving the rotation of the gamma-shaft during hydrolysis. Conversely, the corresponding sequential breaking of these bonds is driven by rotation of the shaft during ATP synthesis. Our results for the energetics during rotation suggest that the nucleotide's coordination with Mg(2+) during binding and release is necessary to account for the observed high efficiency of the motor. 相似文献
8.
Single-site catalysis of F1-ATPase from thermophilic bacterium PS3 and its dominance in steady-state catalysis at low ATP concentration 总被引:1,自引:0,他引:1
Single-site catalysis by F1-ATPase from a thermophilic bacterium PS3 (TF1) was examined by incubating the enzyme with a submolar amount of radioactive ATP. The profile of single-site catalysis by TF1 at 23 degrees C was different from that of beef heart mitochondrial F1-ATPase (MF1). ATP hydrolysis on the enzyme and release of the products was rapid, and subsequent addition of non-radioactive ATP (cold chase) did not promote the hydrolysis of radioactive ATP, indicating that the rate-limiting step was not the step of product release but the step of ATP binding to the enzyme. Thus, the characteristic features of so-called uni-site catalysis were not observed. At 60 degrees C, whether in the presence or absence of phosphate ion, a small amount of bound [alpha, gamma-32P]ATP and cold chase promotion were observed. However, since bound 32P1 was not detected by centrifugal gel filtration, it is not yet certain whether TF1 has typical uni-site characteristics. Based on the hydrolytic turnover rate for single-site catalysis and analysis of the kinetics of steady-state catalysis, it is proposed that single-site catalysis is dominant even in steady-state catalysis at ATP concentrations of less than about 20 microM. 相似文献
9.
10.
11.
12.
13.
F1 ATPase from the thermophilic bacterium PS3 (TF1) shows ATP modulation of oxygen exchange 总被引:1,自引:0,他引:1
The ATPase from the ATP synthase of the thermophilic bacterium PS3 (TF1), unlike F1 ATPase from other sources, does not retain bound ATP, ADP, and Pi at a catalytic site under conditions for single-site catalysis [Yohda, M., & Yoshida, M. (1987) J. Biochem. 102, 875-883]. This raised a question as to whether catalysis by TF1 involved alternating participation of catalytic sites. The possibility remained, however, that there might be transient but catalytically significant retention of bound reactants at catalytic sites when the medium ATP concentration was relatively low. To test for this, the extent of water oxygen incorporation into Pi formed by ATP hydrolysis was measured at various ATP concentrations. During ATP hydrolysis at both 45 and 60 degrees C, the extent of water oxygen incorporation into the Pi formed increased markedly as the ATP concentration was lowered to the micromolar range, with greater modulation observed at 60 degrees C. Most of the product Pi formed arose by a single catalytic pathway, but measurable amounts of Pi were formed by a pathway with high oxygen exchange. This may result from the presence of some poorly active enzyme. The results are consistent with sequential participation of three catalytic sites on the TF1 as predicted by the binding change mechanism. 相似文献
14.
Effects of inadequate vitamin E (E) and/or selenium (Se) nutrition on the activities of cytochrome P-450 mixed function oxidase system (heme hydroperoxidase, p-nitroanisole O-demethylase), and epoxide hydrolase have been investigated. Heme hydroperoxidase activity of liver and lung microsomes was significantly decreased in E deficiency. In the liver, Se deficiency resulted in a significant increase in hydroperoxidase activity. In contrast to the peroxidase activity, liver demethylase activity was only marginally affected in deficiency states. However, kidney demethylase activity was increased two fold in Se deficient states. Liver microsomal epoxide hydrolase activity was significantly increased in both E and Se deficiency states. 相似文献
15.
Previous work has shown that mild trypsin treatment eliminates energy-transduction capability and tight (non-exchangeable)nucleotide binding in beef heart mitochondrial F1-ATPase (Leimgruber, R.M. and Senior, A.E. (1976) J. Biol. Chem. 251, 7103-7109). The structural change brought about by trypsin was, however, too subtle to be identified by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, and was not defined. In this work we have applied two-dimensional electrophoresis (isoelectric focussing then sodium dodecyl sulfate polyacrylamide gradient electrophoresis) to the problem, and have determined that the alpha-subunit of F1 is altered by the mild trypsin treatment, whereas no change was detected in beta-, gamma-, delta- or epsilon-subunits. Binding of ADP to the trypsin-treated F1 was compared to binding to control enzyme over a range of 0-40 muM ADP in a 30 min incubation period. There was no difference between the two enzymes, KADPd in Mg2+ -containing buffer was about 2 muM in each. Since the tight (nonexchangeable)sites are abolished in trypsin-treated F1, this shows that tight exchangeable ADP-binding sites are different from the tight nonexchangeable ADP-binding sites. There was no effect of trypsin cleavage of the alpha-subunit on beta-subunit conformation as judged by aurovertin fluorescence studies. The cleavage of the alpha-subunit which occurred was judged to occur very close to the C- or N-terminus of the subunit and constitutes therefore a small and specific chemical modification which abolishes overall function in F1 but leaves partial functions intact. 相似文献
16.
M Yoshida N Sone H Hirata Y Kagawa 《Biochemical and biophysical research communications》1978,84(1):117-122
The numbers of sulfhydryl residues in F1-ATPase of thermophilic bacterium PS3 and its isolated subunits were analyzed with Ellman's reagent. This F1-ATPase contained three sulfhydryl residues and no disulfide bridge. Of the five kinds of subunits of the F1-ATPase, only the α subunit contained one sulfhydryl residue. So there are three α subunits in one molecule of the F1-ATPase. 相似文献
17.
18.
The hydrolysis of 0.3 microM [alpha,gamma-32P]ATP by 1 microM F1-ATPase isolated from the plasma membranes of Escherichia coli has been examined in the presence and absence of inorganic phosphate. The rate of binding of substoichiometric substrate to the ATPase is attenuated by 2 mM phosphate and further attenuated by 50 mM phosphate. Under all conditions examined, only 10-20% of the [alpha,gamma-32P]ATP that bound to the enzyme was hydrolyzed sufficiently slowly to be examined in cold chase experiments with physiological concentrations of non-radioactive ATP. These features differ from those observed with the mitochondrial F1-ATPase. The amount of bound substrate in equilibrium with bound products observed in the slow phase which was subject to promoted hydrolysis by excess ATP was not affected by the presence of phosphate. Comparison of the fluxes of enzyme-bound species detected experimentally in the presence of 2 mM phosphate with those predicted by computer simulation of published rate constants determined for uni-site catalysis (Al-Shawi, M.D., Parsonage, D. and Senior, A.E. (1989) J. Biol. Chem. 264, 15376-15383) showed that hydrolysis of substoichiometric ATP observed experimentally was clearly biphasic. Less than 20% of the substoichiometric ATP added to the enzyme was hydrolyzed according to the published rate constants which were calculated from the slow phase of product release in the presence of 1 mM phosphate. The majority of the substoichiometric ATP added to the enzyme was hydrolyzed with product release that was too rapid to be detected by the methods employed in this study, indicating again that the F1-ATPase from E. coli and bovine heart mitochondria hydrolyze substoichiometric ATP differently. 相似文献
19.
Structural and functional relationship of ATP synthases (F1F0) from Escherichia coli and the thermophilic bacterium PS3 总被引:1,自引:0,他引:1
K Steffens A Di Gioia G Deckers-Hebestreit K Altendorf 《The Journal of biological chemistry》1987,262(13):6334-6338
Functional compatibility between the F1 and F0 parts of ATP synthases from Escherichia coli (EF1F0) and the thermophilic bacterium PS3 (TF1F0) was analyzed. F1-stripped everted membrane vesicles from both organisms bound the homologous or heterologous F1 part to the same extent. Titration of the reconstituted membrane vesicles with dicyclohexylcarbodiimide revealed a similar sensitivity of the homologous and hybrid F1F0 complexes towards the inhibitor. Furthermore, the heterologous enzymes exhibited ATP-dependent H+ translocation comparable to that of homologous F1F0. Antisera raised against EF1 or subunits a, b, and c of EF0 were analyzed for cross-reactivity with TF1 and TF0. Common antigenic sites have been detected with immunoblot analysis for subunit beta and subunit c of EF1F0 and the corresponding subunits from TF1F0. A weak binding of the anti-a and anti-b antisera with the TF0 part has been observed in an enzyme-linked immunosorbent assay. Based on these findings the structural and functional relationship between the mesophilic and thermophilic ATP synthase complexes is discussed. 相似文献
20.
Komoriya Y Ariga T Iino R Imamura H Okuno D Noji H 《The Journal of biological chemistry》2012,287(18):15134-15142
F(1)-ATPase (F(1)) is an ATP-driven rotary motor wherein the γ subunit rotates against the surrounding α(3)β(3) stator ring. The 3 catalytic sites of F(1) reside on the interface of the α and β subunits of the α(3)β(3) ring. While the catalytic residues predominantly reside on the β subunit, the α subunit has 1 catalytically critical arginine, termed the arginine finger, with stereogeometric similarities with the arginine finger of G-protein-activating proteins. However, the principal role of the arginine finger of F(1) remains controversial. We studied the role of the arginine finger by analyzing the rotation of a mutant F(1) with a lysine substitution of the arginine finger. The mutant showed a 350-fold longer catalytic pause than the wild-type; this pause was further lengthened by the slowly hydrolyzed ATP analog ATPγS. On the other hand, the mutant F(1) showed highly unidirectional rotation with a coupling ratio of 3 ATPs/turn, the same as wild-type, suggesting that cooperative torque generation by the 3 β subunits was not impaired. The hybrid F(1) carrying a single copy of the α mutant revealed that the reaction step slowed by the mutation occurs at +200° from the binding angle of the mutant subunit. Thus, the principal role of the arginine finger is not to mediate cooperativity among the catalytic sites, but to enhance the rate of the ATP cleavage by stabilizing the transition state of ATP hydrolysis. Lysine substitution also caused frequent pauses because of severe ADP inhibition, and a slight decrease in ATP-binding rate. 相似文献