首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior intraparietal area (AIP) of rhesus monkeys is part of the dorsal visual stream and contains neurons whose visual response properties are commensurate with a role in three-dimensional (3D) shape perception. Neuronal responses in AIP signal the depth structure of disparity-defined 3D shapes, reflect the choices of monkeys while they categorize 3D shapes, and mirror the behavioral variability across different stimulus conditions during 3D-shape categorization. However, direct evidence for a role of AIP in 3D-shape perception has been lacking. We trained rhesus monkeys to categorize disparity-defined 3D shapes and examined AIP''s contribution to 3D-shape categorization by microstimulating in clusters of 3D-shape selective AIP neurons during task performance. We find that microstimulation effects on choices (monkey M1) and reaction times (monkey M1 and M2) depend on the 3D-shape preference of the stimulated site. Moreover, electrical stimulation of the same cells, during either the 3D-shape-categorization task or a saccade task, could affect behavior differently. Interestingly, in one monkey we observed a strong correlation between the strength of choice-related AIP activity (choice probabilities) and the influence of microstimulation on 3D-shape-categorization behavior (choices and reaction time). These findings propose AIP as part of the network responsible for 3D-shape perception. The results also show that the anterior intraparietal cortex contains cells with different tuning properties, i.e. 3D-shape- or saccade-related, that can be dynamically read out depending on the requirements of the task at hand.  相似文献   

2.
3.
Single neurons in cortical area LIP are known to carry information relevant to both sensory and value-based decisions that are reported by eye movements. It is not known, however, how sensory and value information are combined in LIP when individual decisions must be based on a combination of these variables. To investigate this issue, we conducted behavioral and electrophysiological experiments in rhesus monkeys during performance of a two-alternative, forced-choice discrimination of motion direction (sensory component). Monkeys reported each decision by making an eye movement to one of two visual targets associated with the two possible directions of motion. We introduced choice biases to the monkeys'' decision process (value component) by randomly interleaving balanced reward conditions (equal reward value for the two choices) with unbalanced conditions (one alternative worth twice as much as the other). The monkeys'' behavior, as well as that of most LIP neurons, reflected the influence of all relevant variables: the strength of the sensory information, the value of the target in the neuron''s response field, and the value of the target outside the response field. Overall, detailed analysis and computer simulation reveal that our data are consistent with a two-stage drift diffusion model proposed by Diederich and Bussmeyer [1] for the effect of payoffs in the context of sensory discrimination tasks. Initial processing of payoff information strongly influences the starting point for the accumulation of sensory evidence, while exerting little if any effect on the rate of accumulation of sensory evidence.  相似文献   

4.
The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1–13Hz, 13–30Hz, 30–60Hz, and 60–100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.  相似文献   

5.
6.
Binocular disparity is a fundamental dimension defining the input we receive from the visual world, along with luminance and chromaticity. In a memory task involving images of natural scenes we investigate whether binocular disparity enhances long-term visual memory. We found that forest images studied in the presence of disparity for relatively long times (7s) were remembered better as compared to 2D presentation. This enhancement was not evident for other categories of pictures, such as images containing cars and houses, which are mostly identified by the presence of distinctive artifacts rather than by their spatial layout. Evidence from a further experiment indicates that observers do not retain a trace of stereo presentation in long-term memory.  相似文献   

7.
Photographs Objects Histories: On the Materiality of Images . Elizabeth Edwards and Janice Hart, eds. London: Routledge Press, 2004. 222 pp.  相似文献   

8.

Purpose

To evaluate proton magnetic resonance spectroscopy (1H-MRS) in a study of cross-modal plasticity in the visual cortex of binocular blindness macaque monkeys.

Materials and Methods

Four healthy neonatal macaque monkeys were randomly divided into 2 groups, with 2 in each group. Optic nerve transection was performed in both monkeys in the experimental group (group B) to obtain binocular blindness. Two healthy macaque monkeys served as a control group (group A). After sixteen months post-procedure, 1H-MRS was performed in the visual cortex of all monkeys. We compared the peak areas of NAA, Cr, Cho, Glx and Ins and the ratios of NAA/Cr, Cho/Cr, Glx/Cr and Ins/Cr of each monkey in group B with group A.

Results

The peak area of NAA and the NAA/Cr ratio in the visual cortex of monkey 4 in group B were found to be dramatically decreased, the peak area of NAA slightly decreased and the NAA/Cr ratio clearly decreased in visual cortex of monkey 3 in group B than those in group A. The peak area of Ins and the Ins/Cr ratio in the visual cortex of monkey 4 in group B slightly increased. The peak area of Cho and the Cho/Cr ratio in the visual cortex of all monkeys in group B dramatically increased compared with group A. The peak area of Glx in the visual cortex of all monkeys in group B slightly increased compared with group A.

Conclusions

1H-MRS could detect biochemical and metabolic changes in the visual cortex and therefore this technique can be used to provide valuable information for investigating the mechanisms of cross-modal plasticity of binocular blindness in a macaque monkey model.  相似文献   

9.

Purpose

To describe a novel method for quantitative measurement of area parameters in ocular anterior segment ultrasound biomicroscopy (UBM) images using Photoshop software and to assess its intraobserver and interobserver reproducibility.

Methods

Twenty healthy volunteers with wide angles and twenty patients with narrow or closed angles were consecutively recruited. UBM images were obtained and analyzed using Photoshop software by two physicians with different-level training on two occasions. Borders of anterior segment structures including cornea, iris, lens, and zonules in the UBM image were semi-automatically defined by the Magnetic Lasso Tool in the Photoshop software according to the pixel contrast and modified by the observers. Anterior chamber area (ACA), posterior chamber area (PCA), iris cross-section area (ICA) and angle recess area (ARA) were drawn and measured. The intraobserver and interobserver reproducibilities of the anterior segment area parameters and scleral spur location were assessed by limits of agreement, coefficient of variation (CV), and intraclass correlation coefficient (ICC).

Results

All of the parameters were successfully measured by Photoshop. The intraobserver and interobserver reproducibilities of ACA, PCA, and ICA were good, with no more than 5% CV and more than 0.95 ICC, while the CVs of ARA were within 20%. The intraobserver and interobserver reproducibilities for defining the spur location were more than 0.97 ICCs. Although the operating times for both observers were less than 3 minutes per image, there was significant difference in the measuring time between two observers with different levels of training (p<0.001).

Conclusion

Measurements of ocular anterior segment areas on UBM images by Photoshop showed good intraobserver and interobserver reproducibilties. The methodology was easy to adopt and effective in measuring.  相似文献   

10.
Paleontological Journal - Data from the studies of mechanisms underlying the development of the sporoderm (envelopes of spores and pollen grains) are analyzed in the aspect of colloidal...  相似文献   

11.
12.
13.
Two questions remain virtually unexplored in the problem of the significance of speech for perception: the significance of speech for perception and reproduction of individual aspects of a complex entity (the number of elements of which it is comprised, their color and disposition), and the features of the connection between words and these elements. The latter question requires some explanation. There are objects whose names we employ very frequently in conversation (table, chair, etc.). There is a particularly close relationship between the visual image of such objects and the words. But at the same time, there are quite a number of objects (certain types of uncommon colors, birds, details of instruments, etc.) the names of which many people do not know. Further, certain details have no special names at all (for example, particular details of ornaments). A. G. Ivanov-Smolenskii, in his article "The Interaction of the First and Second Signal Systems Under Certain Physiological and Pathological Conditions" [O vzaimodeistvii pervoi i vtoroi signal'nykh sistem pri nekotorykh fiziologicheskikh i patologicheskikh usloviiakh], The Physiological Journal, USSR Academy of Sciences [Fiziologicheskii zhurnal AN SSSR], 1949, No. 5, wrote: "Some individually distinct part of experience is always found — for a while — to be untransmitted to the second signal system, and not yet subject to verbal interpretation and verbal formulation ('unverbalized')."  相似文献   

14.
Visually guided action and interaction depends on the brain’s ability to (a) extract and (b) discriminate meaningful targets from complex retinal inputs. Binocular disparity is known to facilitate this process, and it is an open question how activity in different parts of the visual cortex relates to these fundamental visual abilities. Here we examined fMRI responses related to performance on two different tasks (signal-in-noise “coarse” and feature difference “fine” tasks) that have been widely used in previous work, and are believed to differentially target the visual processes of signal extraction and feature discrimination. We used multi-voxel pattern analysis to decode depth positions (near vs. far) from the fMRI activity evoked while participants were engaged in these tasks. To look for similarities between perceptual judgments and brain activity, we constructed ‘fMR-metric’ functions that described decoding performance as a function of signal magnitude. Thereafter we compared fMR-metric and psychometric functions, and report an association between judged depth and fMRI responses in the posterior parietal cortex during performance on both tasks. This highlights common stages of processing during perceptual performance on these tasks.  相似文献   

15.
Graph-theoretical analysis of brain connectivity data has revealed significant features of brain network organization across a range of species. Consistently, large-scale anatomical networks exhibit highly nonrandom attributes including an efficient small world modular architecture, with distinct network communities that are interlinked by hub regions. The functional importance of hubs motivates a closer examination of their mutual interconnections, specifically to examine the hypothesis that hub regions are more densely linked than expected based on their degree alone, i.e. forming a central rich club. Extending recent findings of rich club topology in the cat and human brain, this report presents evidence for the existence of rich club organization in the cerebral cortex of a non-human primate, the macaque monkey, based on a connectivity data set representing a collation of numerous tract tracing studies. Rich club regions comprise portions of prefrontal, parietal, temporal and insular cortex and are widely distributed across network communities. An analysis of network motifs reveals that rich club regions tend to form star-like configurations, indicative of their central embedding within sets of nodes. In addition, rich club nodes and edges participate in a large number of short paths across the network, and thus contribute disproportionately to global communication. As rich club regions tend to attract and disperse communication paths, many of the paths follow a characteristic pattern of first increasing and then decreasing node degree. Finally, the existence of non-reciprocal projections imposes a net directional flow of paths into and out of the rich club, with some regions preferentially attracting and others dispersing signals. Overall, the demonstration of rich club organization in a non-human primate contributes to our understanding of the network principles underlying neural connectivity in the mammalian brain, and further supports the hypothesis that rich club regions and connections have a central role in global brain communication.  相似文献   

16.
17.
目的研究当艾滋病恒河猴模型的血浆病毒载量处于低水平或阴性时,猴免疫缺陷病毒(simian immunodeficiency viruses,SIV)在宿主组织中的分布情况。方法SIVmac251感染恒河猴10只,定期检测其血浆载量,感染病毒平均高峰时间第14天时,活检取淋巴结。选取感染18个月后病毒载量最低水平和阴性的2只艾滋病猴(SAIDS),经安死术后取淋巴结、脾、肝、肺、肾、脑等组织,用原位杂交和实时荧光定量PCR的方法检测病毒在组织中的分布和组织中的病毒载量。结果感染后14d,10只猴血浆病毒载量达到10^7copies/mL,淋巴结组织病毒载量为10^5-10^8copies/g,原位杂交方法在腹股沟淋巴结中检测到强阳性斑点。感染后第18个月的2只猴,血浆病毒载量下降并维持不高于10^2copies/mL水平或阴性,但组织分布不尽相同,在肠系膜淋巴结、肾上腺、海马回、空肠、脾脏等组织中检测到10^5-10^6copies/g的病毒载量,于一只猴的脑积液中检测到10^3copies/mL的病毒载量。用原位杂交的方法在肠系膜淋巴结和空肠中检测到强阳性斑点,其它组织中未检测到阳性斑点。结论实验证实SAIDS猴在血浆病毒载量低甚至阴性时,病毒在不同组织中仍有分布,有些组织中甚至出现高病毒载量,提示在制备SIV/SAIDS模型中,尤其在药物筛选和疫苗评价时,应考虑组织病毒载量指标的测定和药物、疫苗对组织病毒的治疗清除作用的评价。  相似文献   

18.
We used contrast-agent enhanced functional magnetic resonance imaging (fMRI) in the alert monkey to map the cortical regions involved in the extraction of 3D shape from the monocular static cues, texture and shading. As in the parallel human imaging study [1], we contrasted the 3D condition to several 2D control conditions. The extraction of 3D shape from texture (3D SfT) involves both ventral and parietal regions, in addition to early visual areas. Strongest activation was observed in CIP, with decreasing strength towards the anterior part of the intraparietal sulcus (IPS). In the ventral stream 3D SfT sensitivity was observed in a ventral portion of TEO. The extraction of 3D shape from shading (3D SfS) involved predominantly ventral regions, such as V4 and a dorsal potion of TEO. These results are similar to those obtained earlier in human subjects and indicate that the extraction of 3D shape from texture is performed in both ventral and dorsal regions for both species, as are the motion and disparity cues, whereas shading is mainly processed in the ventral stream.  相似文献   

19.
An ability of primates to compare and identify planar images and three-dimensional objects has been studied at solving tasks of the choice on model type. The study is carried out on three species of monkeys of different levels of phylogenetic development: macaques rhesuses Macaca mulata, brown capuchins Cebus apella, and chimpanzee Pan troglodytes. Plaster casts of fruits, household objects, and toys–animals were used for the identification. It is revealed that representatives of the studied monkey species are able to compare and identify three-dimensional objects and their two-dimensional images and to extract identical attributes during solution of visual tasks of different degrees of complexity in variants of the methodical approach choice on model. Under conditions of our experiments, the capuchins, macaques, and chimpanzee performed a direct transfer of the elaborated principle of the solution. There have also been established peculiarities of behavior of different species of the lower and higher monkeys. Macaques rhesuses had difficulties when solving complex combinatory tasks. Capuchins displayed pronounced negative emotions and characteristic patterns of defensive behavior at demonstration and during identification of two- and three-dimensional objects of the toys–animals type. Unlike the lower monkeys, the chimpanzee, when presented with toys–animals, did not change the level of their correct answers and demonstrated pronounced play reactions.  相似文献   

20.
The study of the formation of conditioned reactions to the position of objects in space is an important question not only for physiology and psychology, but to education. It is on the basis of these conditioned reactions that the infant establishes concepts of space (near — far; closer — further, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号