首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relaxation kinetics of aqueous lipid dispersions after a pressure jump (p-jump) was investigated using time-resolved pressure perturbation calorimetry (PPC). Analysis of the calorimetric response curves by deconvolution with the instrumental response function gives information about slow processes connected with the lipid phase transition. The lipid transition from the gel to the liquid-crystalline state was found to be a multi-step process with relaxation constants in the seconds range resolvable by time-resolved PPC and faster processes with relaxation times shorter than ca. 5 s that could not be resolved by the instrument. The faster processes comprise ca. 50% of the total heat uptake at the transition midpoint. This is the first calorimetric measurement showing the multi-step nature of the transition. The results are in good agreement with data obtained with other detection methods and with molecular modelling experiments describing the transition as a multi-step process with nucleation and growth steps.  相似文献   

2.
Summary Diffusion of small nonelectrolytes through planar lipid bilayer membranes (egg phosphatidylcholine-decane) was examined by correlating the permeability coefficients of 22 solutes with their partition coefficients between water and four organic solvents. High correlations were observed with hexadecane and olive oil (r=0.95 and 0.93), but not octanol and ether (r=0.75 and 0.74). Permeabilities of the seven smallest molecules (mol wt <50) (water, hydrofluoric acid, hydrochloric acid, ammonia, methylamine, formic acid and formamide) were 2- to 15-fold higher than the values predicted by the permeabilities of the larger molecules (50相似文献   

3.
The adsorption of nonpolar molecules into lipid bilayer membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Thermodynamic considerations show that the adsorption of nonpolar molecules into lipid bilayer membranes should depend upon the curvature of the membranes. Estimations of the differences in adsorption of a small n-alkane between a planar phospholipid bilayer and liposomal vesicles have been attempted. For spherical multilamellar liposomes exposed to saturated solutions of alkane in water the adsorption is calculated to be 17-65% of the value for the planar bilayer, depending on the assumptions in the model.  相似文献   

4.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

5.
The passage of a phospholipid through the gel to liquid crystal phase transition is associated with an increase in the motional freedom of its fatty acyl chains as measured by spectroscopic techniques and an essentially isothermal absorption of heat as measured by differential scanning calorimetry (DSC). In addition, bilayers formed from that phospholipid display a permeability maximum for both non-electrolytes and electrolytes in the temperature region of the phase transition. In this study the sodium (and in some cases glucose) permeabilities of liposomes composed of either dimyristoyl or dipalmitoyl phosphatidylcholine plus dicetylphosphate were measured in the presence of a group of benzene and adamantane derivatives known to increase fatty acyl chain motion below the lipid transition temperature (Tc) and in the case of the adamantanes to also lower the Tc as measured by DSC. None of these compounds change the temperature at which the permeability maximum occurs despite their lowering of the phospholipid Tc. That is, in the presence of these additives there is observed an apparent dissociation between the phase transition and the permeability maximum. It is proposed that the permeability maximum normally observed in the temperature region of the Tc is associated with the completion of the ‘melting’ process. Hence a compound could cause early ‘melting’ of the bilayer but not change its permeability properties if the temperature at which the ‘melting’ process neared completion was not changed.  相似文献   

6.
The localisation of small molecules in lipid bilayers   总被引:9,自引:0,他引:9  
  相似文献   

7.
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.  相似文献   

8.
Antimicrobial peptides (AMPs) are an important component of innate immunity and have generated considerable interest as a potential new class of antibiotic. The biological activity of AMPs is strongly influenced by peptide-membrane interactions; however, for many of these peptides the molecular details of how they disrupt and/or translocate across target membranes are not known. CM15 is a linear, synthetic hybrid AMP composed of the first seven residues of the cecropin A and residues 2-9 of the bee venom peptide mellitin. Previous studies have shown that upon membrane binding CM15 folds into an alpha-helix with its helical axis aligned parallel to the bilayer surface and have implicated the formation of 2.2-3.8 nm pores in its bactericidal activity. Here we report site-directed spin labeling electron paramagnetic resonance studies examining the behavior of CM15 analogs labeled with a methanethiosulfonate spin label (MTSL) and a brominated MTSL as a function of increasing peptide concentration and utilize phospholipid-analog spin labels to assess the effects of CM15 binding and accumulation on the physical properties of membrane lipids. We find that as the concentration of membrane-bound CM15 is increased the N-terminal domain of the peptide becomes more deeply immersed in the lipid bilayer. Only minimal changes are observed in the rotational dynamics of membrane lipids, and changes in lipid dynamics are confined primarily to near the membrane surface. However, the accumulation of membrane-bound CM15 dramatically increases accessibility of lipid-analog spin labels to the polar relaxation agent, nickel (II) ethylenediaminediacetate, suggesting an increased permeability of the membrane to polar solutes. These results are discussed in relation to the molecular mechanism of membrane disruption by CM15.  相似文献   

9.
The rotational mobility of the phosphate translocator from the chloroplast envelope and of lipid molecules in the membrane of unilamellar azolectin liposomes has been investigated. The rotational dynamics of the liposome membrane were investigated by measuring the rotational diffusion of eosin-5-isothiocyanate(EITC)-labeled L-alpha-dipalmitoylglycerophosphoethanolamine (Pam2 GroPEtn) in the lipid phase of the vesicles, either in the presence or absence of the reconstituted phosphate translocator. The temperature dependence of the anisotropy decay showed that above 25 degrees C the main contribution to the anisotropy decay was caused by uniaxial anisotropic rotation of the labelled lipid molecules around the axis normal to the membrane plane. The rate of rotation of the labelled lipid molecules was strongly dependent on the viscosity of the medium (eta 1). Extrapolation to eta 1 = 0 Pa.s yielded a correlation time of phi = 20 +/- 5 ns, t = 30 degrees C, for lipid rotation with respect to the membrane normal. The rotational diffusion coefficient of the lipid molecules was calculated to be Dr = 2.0 x 10(9) rad2.s-1 and the apparent microviscosity in the vesicle membrane, as derived from the rotational correlation time, was eta 2 approximately 12 mPa.s. The rotational correlation time of the phosphate translocator in the membrane was only slightly dependent on the viscosity of the medium. The temperature dependence of the protein rotation also indicated that the rotation of the protein in the membrane was largely restricted and occurred mainly about the axis normal to the membrane plane. Measurements at a medium viscosity of eta 1 = 1 mPa.s yielded a value of phi r approximately 450 ns corresponding to Dr = 8.8 x 10(7) rad2.s-1 for protein rotation with respect to the membrane normal. From this value and the data of the lipid rotation, the cross-sectional area of the protein part embedded in the membrane was calculated to be approximately 9 nm2. This cross-sectional area is large enough to include at most 14 membrane-spanning helices. Our results also indicated that at lipid/protein molar ratios greater than or equal to 1.5 x 10(4): 1 aggregation occurred in the model membranes below 30 degrees C. However, above 30 degrees C and at a high dilution of the protein in the membrane it appeared that the membrane viscosity monitored by lipid and protein rotational diffusion were identical.  相似文献   

10.
11.
A number of organic compounds (non-electrolytes, tetraalkylammonia, etc.) with a molecular size of 6--8 angstrom decrease the conductance of ionic channels formed in the lipid bilayer by a polyene antibiotic amphotericin B. It is suggested that these compounds, upon entering the channel, block the passage of inorganic ions. The extent of conductance blockage by organic ions depends on the membrane potential and electrolyte concentration. In the presence of ionic blockers, for instance tetraethylammonium, amphotericin B-containing membranes assume some properties characteristic of excitable membranes, i.e. the current-voltage characteristic acquires the negative resistance region, and in response to a potential step activation followed by inactivation of conductance is observed. It is shown that the potential dependence of the blockage is due to interaction inside the channel of the blocker ion with penetrating ions, by a mechanism similar to that described by Armstrong ((1979) Q. Rev. Biophys. 7, 179--210) for blockage of squid axon potassium channels by ammonium derivatives.  相似文献   

12.
Multilamellar spin labelled liposomes were prepared from dipalmitoyl or dimyristoyl phosphatidylcholine, dicetyl phosphate, and the spin probe 12-doxyl stearate methyl ester. The effects of a series of benzene and adamantane derivatives, on fatty acyl chain motion was measured through changes in the electron spin resonance spectra of these liposomes. All the compounds tested, increased lipid chain motion to a variable degree. In general, molecules possessing a polar group were more potent than those lacking such a group and lipophilicity per se correlated poorly with the relative order of these compounds. Within the adamantane series separating the polar group from the cage structure by the insertion of methylene groups further enhanced the capacity of the molecule to increase hydrocarbon chain mobility. These observations are consistent with the hypothesis that the location of the additive within the bilayer is the main determinant of its effectiveness in increasing fatty acyl chain motion.  相似文献   

13.
The BLM-system for studying the electrophysical properties of bilayer lipid membranes (BLM) was applied to investigate interactions between polyamidoamine (PAMAM) dendrimers and lipid bilayers. The cationic PAMAM G5 dendrimer effectively disrupted planar phosphatidylcholine membranes, while the hydroxyl PAMAM-OH G5 and carboxyl PAMAM G4.5 dendrimers had no significant effect on them.  相似文献   

14.
15.
Three different bilayer lipid membrane systems were studied under visible and ultraviolet illumination. The first system consisted of a bilayer lipid membrane formed with a mixture of phospholipids and cholesterol, to one side of which purple membrane fragments from Halobacterium halobium were added. The second system consisted of a membrane formed from spinach chloroplast extract. When either of these membrane systems was illuminated with ultraviolet and visible radiation, photopotentials were observed and photoelectric action spectra were recorded (the technique is termed photoelectrospectrometry). Each spectrum had a definite structure which was characteristic of each of the modified membranes. The third system studied consisted of an otherwise photoinactive membrane formed with a mixture of phospholipids and cholesterol, to one side of which chymotrypsin was added. When the membrane was illuminated with visible light no photoresponse was observed. On the other hand, a photopotential which increased with incubation time was observed when the membrane was illuminated with ultraviolet light. Since, in our systems, the photoresponses have been observed to be due to certain species incorporated into the membrane, it appears that photoelectrospectrometry is a useful tool for studying lipid-protein interactions, constituent organization and energy transfer in membranes.  相似文献   

16.
It is found that bilayer lipid membranes acquire little cationic selectivity in the presence of systemic fungicide triforine at physiological pH, and besides potassium selectivity exceeds the sodium one. A decrease of pH to 3.5 leads to substitution of cationic selectivity by the anionic one. It is suggested that selectivity of the membranes modified by triforine is determined both by charge and dipole moments of the fungicide molecule.  相似文献   

17.
Summary. In an attempt to increase our knowledge regarding the mechanisms of surfactant membrane interaction, we studied the action of several anionic and cationic amino acid-based surfactants on membrane fluidity using fluorescence anisotropy. Anisotropy measurements demonstrated that almost all of the surfactants studied disturbed the external region of the erythrocyte membrane without affecting the core of the bilayer. How the physico-chemical properties and structure of these compounds affect dynamics of the lipid bilayer is discussed in detail.  相似文献   

18.
Burger KN  Demel RA  Schmid SL  de Kruijff B 《Biochemistry》2000,39(40):12485-12493
Dynamin is a large GTPase involved in the regulation of membrane constriction and fission during receptor-mediated endocytosis. Dynamin contains a pleckstrin-homology domain which is essential for endocytosis and which binds to anionic phospholipids. Here, we show for the first time that dynamin is a membrane-active molecule capable of penetrating into the acyl chain region of membrane lipids. Lipid penetration is strongly stimulated by phosphatidic acid (PA), phosphatidylinositol 4-phosphate, and phosphatidylinositol 4, 5-bisphosphate. Though binding is more efficient in the presence of the phosphoinositides, a much larger part of the dynamin molecule penetrates into PA-containing mixed-lipid systems. Thus, local lipid metabolism will dramatically influence dynamin-lipid interactions, and dynamin-lipid interactions are likely to play an important role in dynamin-dependent endocytosis. Our data suggest that dynamin is directly involved in membrane destabilization, a prerequisite to membrane fission.  相似文献   

19.
To reach their biological target, drugs have to cross cell membranes, and understanding passive membrane permeation is therefore crucial for rational drug design. Molecular dynamics simulations offer a powerful way of studying permeation at the single molecule level. Starting from a computer model proven to be able to reproduce the physical properties of a biological membrane, the behaviour of small solutes and large drugs in a lipid bilayer has been studied. Analysis of dihedral angles shows that a few nano seconds are sufficient for the simulations to converge towards common values for those angles, even if the starting structures belong to different conformations. Results clearly show that, despite their difference in size, small solutes and large drugs tend to lie parallel to the bilayer normal and that, when moving from water solution into biomembranes, permeants lose degrees of freedom. This explains the experimental observation that partitioning and permeation are highly affected by entropic effects and are size-dependent. Tilted orientations, however, occur when they make possible the formation of hydrogen bonds. This helps to understand the reason why hydrogen bonding possibilities are an important parameter in cruder approaches which predict drug absorption after administration. Interestingly, hydration is found to occur even in the membrane core, which is usually considered an almost hydrophobic region. Simulations suggest the possibility for highly polar compounds like acetic acid to cross biological membranes while hydrated. These simulations prove useful for drug design in rationalising experimental observations and predicting solute behaviour in biomembranes.  相似文献   

20.
The degree of dependence of a lipid bilayer's surface properties on its conformational state is still an unresolved question. Surface properties are functions of molecular organization in the complex interfacial region. In the past, they were frequently measured using fluorescence spectroscopy. Since a fluorescent probe provides information on its local environment, there is a need to estimate the effect caused by the probe itself. In this paper, we address this question by calculating how lipid head-group orientation effects the fluorescence intensity of Fluorescein-PE (a probe that is sensitive to surface potential). In the theoretical model assumed the lipid bilayer state and the interactions between the charged fluorescent probe and the surrounding lipid molecules was evaluated. The results of this theoretical analysis were compared with experimentally obtained data. A lipid bilayer formed from DPPC was chosen as the experimental system, since it exhibits all the major conformational states within a narrow temperature range of 30 degrees C-45 degrees C. Fluorescein-PE fluorescence intensity depends on local pH, which in turn is sensitive to local electrostatic potential in the probe's vicinity. This local electrostatic potential is generated by lipid head-group dipole orientation. We have shown that the effect of the probe on lipid bilayer properties is limited when the lipid bilayer is in the gel phase, whereas it is more pronounced when the membrane is liquid-crystalline. This implies that Fluorescein-PE is a good reporter of local electrostatic fields when the lipid bilayer is in the gel phase, and is a poor reporter when the membrane is in the liquid-crystalline state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号