首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Nucleic acid sensing through pattern recognition receptors is critical for immune recognition of microbial infections. Microbial DNA is frequently methylated at the N6 position of adenines (m6A), a modification that is rare in mammalian host DNA. We show here how that m6A methylation of 5′-GATC-3′ motifs augments the immunogenicity of synthetic double-stranded (ds)DNA in murine macrophages and dendritic cells. Transfection with m6A-methylated DNA increased the expression of the activation markers CD69 and CD86, and of Ifnβ, iNos and Cxcl10 mRNA. Similar to unmethylated cytosolic dsDNA, recognition of m6A DNA occurs independently of TLR and RIG-I signalling, but requires the two key mediators of cytosolic DNA sensing, STING and cGAS. Intriguingly, the response to m6A DNA is sequence-specific. m6A is immunostimulatory in some motifs, but immunosuppressive in others, a feature that is conserved between mouse and human macrophages. In conclusion, epigenetic alterations of DNA depend on the context of the sequence and are differentially perceived by innate cells, a feature that could potentially be used for the design of immune-modulating therapeutics.  相似文献   

2.
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.  相似文献   

3.
This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocytes, and palmitate oxidation revealed that a HF diet increased the thermogenic capacity of the interscapular and aortic brown adipose tissues, whereas exercise markedly suppressed it. Conversely, exercise induced browning of the SC Ing WAT. This effect was attenuated by a HF diet. Endurance training neither affected skeletal muscle FNDC5 content nor circulating irisin, but it increased FNDC5 content in SC Ing WAT. This suggests that locally produced FNDC5 rather than circulating irisin mediated the exercise-induced browning effect on this fat tissue. Importantly, despite reducing the thermogenic capacity of classical BAT, exercise increased whole-body energy expenditure during the dark cycle. Therefore, browning of subcutaneous WAT likely exerted a compensatory effect and raised whole-body energy expenditure in endurance-trained rats. Based on these novel findings, we propose that exercise-induced browning of the subcutaneous WAT provides an alternative mechanism that reduces thermogenic capacity in core areas and increases it in peripheral body regions. This could allow the organism to adjust its metabolic rate to accommodate diet-induced thermogenesis while simultaneously coping with the stress of chronically increased heat production through exercise.  相似文献   

4.
Sustained hyperglycaemia and hyperlipidaemia incur endoplasmic reticulum stress (ER stress) and reactive oxygen species (ROS) overproduction in pancreatic β‐cells. ER stress or ROS causes c‐Jun N‐terminal kinase (JNK) activation, and the activated JNK triggers apoptosis in different cells. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an inducible multi‐stress response factor. The aim of this study was to explore the role of NR4A1 in counteracting JNK activation induced by ER stress or ROS and the related mechanism. qPCR, Western blotting, dual‐luciferase reporter and ChIP assays were applied to detect gene expression or regulation by NR4A1. Immunofluorescence was used to detect a specific protein expression in β‐cells. Our data showed that NR4A1 reduced the phosphorylated JNK (p‐JNK) in MIN6 cells encountering ER stress or ROS and reduced MKK4 protein in a proteasome‐dependent manner. We found that NR4A1 increased the expression of cbl‐b (an E3 ligase); knocking down cbl‐b expression increased MKK4 and p‐JNK levels under ER stress or ROS conditions. We elucidated that NR4A1 enhanced the transactivation of cbl‐b promoter by physical association. We further confirmed that cbl‐b expression in β‐cells was reduced in NR4A1‐knockout mice compared with WT mice. NR4A1 down‐regulates JNK activation by ER stress or ROS in β‐cells via enhancing cbl‐b expression.  相似文献   

5.
6.
7.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号