首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposit of amyloid peptides in the cells is related to various amyloidosis diseases. A variety of nanomaterials have been developed to resist amyloid deposit. Most of the research on the inhibition of nanomaterials against amyloid aggregation are undertaken in solution, while the membranes that may mediate fibrillar aggregation and affect interaction of inhibitors with amyloid peptides in biotic environment are little taken into account. In this study, we synthesized three kinds of gold nanoclusters modified with cysteine (C@AuNCs), glutathione (GSH@AuNCs) and a peptide derived from the core region of hIAPP fibrillation (C-HL-8P@AuNCs), and investigated their inhibitory activities against hIAPP fibrillation in the absence and presence of lipid vesicles (POPC/POPG 4:1 LUVs) by the experiments of ThT fluorescence kinetics, AFM and CD. We also explored the inhibitions of hIAPP-induced membrane damage and cytotoxicity by peptide@AuNCs using fluorescent dye leakage and cell viability assays. Our study revealed that the inhibitory efficiency of these peptide@AuNCs against hIAPP fibrillation follows C-HL-8P@AuNCs≅GSH@AuNCs>C@AuNCs in lipid-free solution and C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs in lipid membrane environment. Compared with the results obtained in lipid-free solution, the inhibitions of hIAPP fibrillation observed in lipid membrane environment were more associated with the inhibitions of hIAPP-induced damages of lipid vesicles and INS-1 cells (C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs). An additional hydrophobic interaction with the homologous core region of hIAPP, which is only provided by C-HL-8P@AuNCs and largely suppressed in lipid-free solution, enhanced in the membrane environment and therefore made C-HL-8P@AuNCs much more powerful than GSH@AuNCs and C@AuNCs in the inhibitions of hIAPP fibrillation and cytotoxicity.  相似文献   

2.
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.  相似文献   

3.
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs.We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed.  相似文献   

4.
Irvalec is a marine-derived antitumor agent currently undergoing phase II clinical trials. In vitro, Irvalec induces a rapid loss of membrane integrity in tumor cells, accompanied of a significant Ca(2+) influx, perturbations of membrane conductivity, severe swelling and the formation of giant membranous vesicles. All these effects are not observed in Irvalec-resistant cells, or are significantly delayed by pretreating the cells with Zn(2+). Using fluorescent derivatives of Irvalec it was demonstrated that the compound rapidly interacts with the plasma membrane of tumor cells promoting lipid bilayer restructuration. Also, FRET experiments demonstrated that Irvalec molecules localize in the cell membrane close enough to each other as to suggest that the compound could self-organize, forming supramolecular structures that likely trigger cell death by necrosis through the disruption of membrane integrity.  相似文献   

5.
To date, over 20 peptides or proteins have been identified that can form amyloid fibrils in the body and are thought to cause disease. The mechanism by which amyloid peptides cause the cytotoxicity observed and disease is not understood. However, one of the major hypotheses is that amyloid peptides cause membrane perturbation. Hence, we have studied the interaction between lipid bilayers and the 37 amino acid residue polypeptide amylin, which is the primary constituent of the pancreatic amyloid associated with type 2 diabetes. Using a dye release assay we confirmed that the amyloidogenic human amylin peptide causes membrane disruption; however, time-lapse atomic force microscopy revealed that this did not occur by the formation of defined pores. On the contrary, the peptide induced the formation of small defects spreading over the lipid surface. We also found that rat amylin, which has 84% identity with human amylin but cannot form amyloid fibrils, could also induce similar lesions to supported lipid bilayers. The effect, however, for rat amylin but not human amylin, was inhibited under high ionic conditions. These data provide an alternative theory to pore formation, and how amyloid peptides may cause membrane disruption and possibly cytotoxicity.  相似文献   

6.
Transthyretin (TTR) is an amyloidogenic protein involved in many mental diseases. The peptide derived from TTR (105-115) has been widely studied as a model peptide for understanding the mechanism of amyloid fibril formation. However, the detailed arrangement of this peptide in amyloid fibril is still unclear. We have studied the amyloid fibril formation process of TTR (105-115) by introducing a pair of FRET probes into the peptide with a dansyl group at the N-terminal and a tryptophan residue at the C-terminal. Our experiment demonstrated that the strands of TTR (105-115) in the same beta-sheet may be parallel and the mating sheets may be anti-parallel to each other in the amyloid fibril. The kinetics followed by FRET and EM indicated for a possible intermediate state and the distance between sheets became shorter when the intermediate amyloid fibril turns into a more matured form.  相似文献   

7.
《Biophysical journal》2020,118(6):1270-1278
Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106–126 fragment of prion protein (PrP(106–126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106–126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106–126) and hIAPP. Specifically, the experiments reveal that both PrP(106–126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106–126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.  相似文献   

8.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg/ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t 1/2) for at least one-third of the cell cholesterol of 3.2 +/- 0.6 and 14.3 +/- 1.5 h, respectively. Plasma membrane vesicles (0.5-5.0 micron diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t 1/2 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 +/- 0.5 and 11.2 +/- 0.7 h, respectively. These t 1/2 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rates indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 +/- 0.1 and 2.9 +/- 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t 1/2 values for cholesterol efflux from these cell lines.  相似文献   

9.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

10.
Polysialic acid (polySia) forms linear chains which are usually attached to the external surface of the plasma membrane mainly through the Neural Cell Adhesion Molecule (NCAM) protein. It is exposed on neural cells, several types of cancer cells, dendritic cells, and egg and sperm cells. There are several lipid raft-related phenomena in which polySia is involved; however the mechanisms of polySia action as well as determinants of its localization in lipid raft microdomains are still unknown, although the majority of NCAM molecules in the liquid-ordered raft membrane fractions of neural cells appear to be polysialylated. Here we investigate the affinity of polySia (both soluble and NCAM-dependent plasma membrane-bound) for liquid-ordered- and liquid-disordered regions of lipid vesicle and neuroblastoma cell membranes. Our studies indicate that polySia chains have a higher affinity for ordered regions of membranes as determined by the dissociation constant values for polySia-lipid bilayer complex, the fluorescence intensity of polySia bound to giant vesicles, the polySia-to-membrane FRET signal at the plasma membrane of live cells, and the decrease of the FRET signals after Endo-N treatment of the cells. These results suggest that polysialylation may be one of the determinants of protein association with liquid-ordered membrane lipid raft domains.  相似文献   

11.
Hou X  Richardson SJ  Aguilar MI  Small DH 《Biochemistry》2005,44(34):11618-11627
Transthyretin (TTR) can deposit as amyloid in the peripheral nervous system and induce a peripheral neuropathy. We examined the mechanism of TTR amyloid neurotoxicity on SH-SY5Y neuroblastoma cells. Wild-type (WT) TTR and two amyloidogenic mutants (V30M and L55P) were expressed in Escherichia coli. Incubation (aging) of WT TTR at 37 degrees C for 1 week caused no significant aggregation. However, there was a significant increase in the extent of amyloid fibril formation after the amyloidogenic mutants had been aged. L55P TTR aggregated more readily than V30M TTR. Both amyloidogenic mutants were neurotoxic after aging. The order of neurotoxicity was as follows: L55P > V30M > WT. As binding of amyloid proteins to the plasma membrane may cause cytotoxicity, we studied the binding of TTR to a plasma membrane-enriched preparation from SH-SY5Y cells by surface plasmon resonance. All three forms bound to the plasma membrane through electrostatic interactions. The binding of the amyloidogenic mutants was increased by aging. The amount of binding correlated closely with the amount of aggregation and with the cytotoxicity of each form. As membrane fluidity can influence cell viability, we also examined the effect of TTR on membrane fluidity using a fluorescence anisotropy method. Binding of the amyloidogenic TTR mutants increased membrane fluidity, and once again, the order of potency was as follows: L55P > V30M > WT. These results demonstrate that TTR can bind to the plasma membrane and cause a change in membrane fluidity. Altered membrane fluidity may be the cause of the neurotoxicity.  相似文献   

12.
Protein membrane transduction domains are able to translocate through cell membranes. This capacity resulted in new concepts on cell communication and in the design of vectors for internalization of active molecules into cells. Penetratin crosses the plasma membrane by a receptor and metabolic energy-independent mechanism which is at present unknown. A better knowledge of its interaction with phospholipids will help to understand the molecular mechanisms of cell penetration. Here, we investigated the role of lipid composition on penetratin induced membrane perturbations by X-ray diffraction, microscopy and 31P-NMR. Penetratin showed the ability to induce phospholipid domain separation, membrane bilayer thickening, formation of vesicles, membrane undulations and tubular pearling. These data demonstrate its capacity to increase membrane curvature and suggest that dynamic phospholipid–penetratin complexes can be organized in different structural arrangements. These properties and their implications in peptide membrane translocation capacity are discussed.  相似文献   

13.
An increasing amount of evidence suggests that in several amyloid diseases, the fibril formation in vivo and the mechanism of toxicity both involve membrane interactions. We have studied Alzheimer's disease related amyloid beta peptide (Aβ). Recombinant Aβ(M1-40) and Aβ(M1-42) produced in Escherichia coli, allows us to carry out large scale kinetics assays with good statistics. The amyloid formation process is followed in means of thioflavin T fluorescence at relatively low (down to 380 nM) peptide concentration approaching the physiological range. The lipid membranes are introduced in the system as large and small unilamellar vesicles. The aggregation lagtime increases in the presence of lipid vesicles for all situations investigated and the phase behavior of the membrane in the vesicles has a large effect on the aggregation kinetics. By comparing vesicles with different membrane phase behavior we see that the solid gel phase dipalmitoylphosphatidylcholine bilayers cause the largest retardation of Aβ fibril formation. The membrane-induced retardation reaches saturation and is present when the vesicles are added during the lag time up to the nucleation point. No significant difference is detected in lag time when increasing amount of negative charge is incorporated into the membrane.  相似文献   

14.
Protein aggregation is a ubiquitous phenomenon underpinning the origins of a range of human diseases. The amyloid aggregation of human islet amyloid polypeptide (IAPP) and alpha synuclein (αS), specifically, is a hallmark of type 2 diabetes (T2D) and Parkinson's disease impacting millions of people worldwide. Although IAPP and αS are strongly associated with pancreatic β-cell islets and presynaptic terminals, they have also been found in blood circulation and the gut. While extensive biophysical and biochemical studies have been focused on IAPP and αS interacting with cell membranes or model lipid vesicles, the roles of plasma proteins on the amyloidosis and membrane association of these two major types of amyloid proteins have rarely been examined. Using a thioflavin T kinetic assay, transmission electron microscopy and a hemolysis assay here we show that human serum albumin, the most abundant protein in the plasma, impeded the fibrillization and mitigated membrane damage of both IAPP and αS. This study offers a new insight on the native inhibition of amyloidosis.  相似文献   

15.
Among harmful conditions damaging the blood–brain barrier, cerebral stroke and reperfusion injuries were proposed as contributing factors to Alzheimer's disease etiology. Indeed it was reported that ischemic conditions promote β-amyloid peptide production in brain endothelial cells, although implicated mechanisms are yet not fully understood.Oxidative injury related to ischemia affects membrane-lipids profile by altering their biochemical properties and structural dynamics, which are also believed to play significant role in the amyloid precursor protein processing, suggesting a link between alterations in lipid membrane composition and β-amyloid peptide production enhancement.Using brain microvascular endothelial cells, here we demonstrate how oxygen and glucose deprivation followed by normal conditions restoration, mimicking ischemic environment, increases cell cholesterol amount (+20%), reduces membrane fluidity and results in strong activation (+40%) of β-secretase 1 enzymatic activity. Moreover, we observed an increase of amyloid precursor protein and β-secretase 1 protein levels with altered localization in non-discrete (Triton X-100 soluble) membrane domains, leading to an enhanced production of amyloid precursor protein β-carboxyl-terminal fragment. Therefore, lipid alterations induced by oxygen and glucose deprivation enhance β-secretase 1 activity, favor its proximity to amyloid precursor protein and may concur to increased amyloidogenic cleavage. The latter, represents a detrimental event that may contribute to β-amyloid homeostasis impairment in the brain and to Alzheimer's disease-related BBB dysfunctions.  相似文献   

16.
Recent data depict membranes as the main sites where proteins/peptides are recruited and concentrated, misfold, and nucleate amyloids; at the same time, membranes are considered key triggers of amyloid toxicity. The N-terminal domain of the prokaryotic hydrogenase maturation factor HypF (HypF-N) in 30% trifluoroethanol undergoes a complex path of fibrillation starting with initial 2-3-nm oligomers and culminating with the appearance of mature fibrils. Oligomers are highly cytotoxic and permeabilize lipid membranes, both biological and synthetic. In this article, we report an in-depth study aimed at providing information on the surface activity of HypF-N and its interaction with synthetic membranes of different lipid composition, either in the native conformation or as amyloid oligomers or fibrils. Like other amyloidogenic peptides, the natively folded HypF-N forms stable films at the air/water interface and inserts into synthetic phospholipid bilayers with efficiencies depending on the type of phospholipid. In addition, HypF-N prefibrillar aggregates interact with, insert into, and disassemble supported phospholipid bilayers similarly to other amyloidogenic peptides. These results support the idea that, at least in most cases, early amyloid aggregates of different peptides and proteins produce similar effects on the integrity of membrane assembly and hence on cell viability.  相似文献   

17.
A 15-residue peptide dimer G15 derived from the cell lytic protein granulysin has been shown to exert potent activity against microbes, including E. coli, but not against human Jurkat cells [Z. Wang, E. Choice, A. Kaspar, D. Hanson, S. Okada, S.C. Lyu, A.M. Krensky, C. Clayberger, Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol. 165 (2000) 1486-1490]. We investigated the target membrane selectivity of G15 using fluorescence, circular dichroism and 31P NMR methods. The ANS uptake assay shows that the extent of E. coli outer membrane disruption depends on G15 concentration. 31P NMR spectra obtained from E. coli total lipid bilayers incorporated with G15 show disruption of lipid bilayers. Fluorescence binding studies on the interaction of G15 with synthetic liposomes formed of E. coli lipids suggest a tight binding of the peptide at the membrane interface. The peptide also binds to negatively charged POPC/POPG (3:1) lipid vesicles but fails to insert deep into the membrane interior. These results are supported by the peptide-induced changes in the measured isotropic chemical shift and T1 values of POPG in 3:1 POPC:POPG multilamellar vesicles while neither a non-lamellar phase nor a fragmentation of bilayers was observed from NMR studies. The circular dichroism studies reveal that the peptide exists as a random coil in solution but folds into a less ordered conformation upon binding to POPC/POPG (3:1) vesicles. However, G15 does not bind to lipid vesicles made of POPC/POPG/Chl (9:1:1) mixture, mimicking tumor cell membrane. These results explain the susceptibility of E. coli and the resistance of human Jurkat cells to G15, and may have implications in designing membrane-selective therapeutic agents.  相似文献   

18.
Human islet amyloid polypeptide (hIAPP) is known to misfold and aggregate into amyloid deposits that may be found in pancreatic tissues of patients affected by type 2 diabetes. Recent studies have shown that the highly amyloidogenic peptide LANFLVH, corresponding the N-terminal 12–18 region of IAPP, does not induce membrane damage. Here we assess the role played by the aromatic residue Phe in driving both amyloid formation and membrane interaction of LANFLVH. To this aim, a set of variant heptapeptides in which the aromatic residue Phe has been substituted with a Leu and Ala is studied. Differential scanning calorimetry (DSC) and membrane-leakage experiments demonstrated that Phe substitution noticeably affects the peptide-induced changes in the thermotropic properties of the lipid bilayer but not its membrane damaging potential. Atomic force microscopy (AFM), ThT fluorescence and Congo red birefringence assays evidenced that the Phe residue is not required for fibrillogenesis, but it can influence the self-assembling kinetics. Molecular dynamics simulations have paralleled the outcome of the experimental trials also providing informative details about the structure of the different peptide assemblies. These results support a general theory suggesting that aromatic residues, although capable of affecting the self-assembly kinetics of small peptides and peptide-membrane interactions, are not essential either for amyloid formation or membrane leakage, and indicate that other factors such as β-sheet propensity, size and hydrophobicity of the side chain act synergistically to determine peptide properties.  相似文献   

19.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

20.
Lipopeptides derived from protein kinase C (PKC) pseudosubstrates have the ability to cross the plasma membrane in cells and modulate the activity of PKC in the cytoplasm. Myristoylation or palmitoylation appears to promote translocation across membranes, as the non-acylated peptides are membrane impermeant. We have investigated, by fluorescence spectroscopy, how myristoylation modulates the interaction of the PKC pseudosubstrate peptide KSIYRRGARRWRKL with lipid vesicles and translocation across the lipid bilayer. Our results indicate that myristoylated peptides are intimately associated with lipid vesicles and are not peripherally bound. When visualized under a microscope, myristoylation does appear to facilitate translocation across the lipid bilayer in multilamellar lipid vesicles. Translocation does not involve large-scale destabilization of the bilayer structure. Myristoylation promotes translocation into the hydrophobic interior of the lipid bilayer even when the non-acylated peptide has only weak affinity for membranes and is also only peripherally associated with lipid vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号