首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   

2.
Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.  相似文献   

3.
Prospective studies have found that the risk of non-small cell lung cancer (NSCLC) has close relationship with estrogen. The effects of estrogens are mediated via two estrogen receptor (ER) isoforms, that is, ER alpha (ERα) and ER beta (ERβ). ERα in NSCLC has been evaluated mostly by immunohistochemistry. However, our previous study showed that ERβ was also highly expressed in Chinese NSCLC. But the roles of ERβ in Chinese NSCLC have not been clarified as yet. So in the present study, two Chinese lung adenocarcinoma cell lines, SPC-A1 and LTEP-a2, were used and the role of ERβ in lung tumorigenesis was focused to be investigated by in vitro and in vivo experiments. The results showed that over-expressed ERβ can promote the development of NSCLC, while siRNAs targeting ERβ gene can inhibit growth of NSCLC cells and induce apoptosis of these cells via mitochondrial depolarization and caspase-3 activation. These results indicated that ERβ plays an important role in development of Chinese NSCLC. This suggests that ERβ deactivation or down-regulation may possess potential therapeutic utility for the treatment of lung cancer.  相似文献   

4.
5.
Curcumin, a naturally occurring phenolic compound, has a diversity of antitumor activities. It has been previously demonstrated that curcumin can inhibit the invasion and metastasis of tumors through activation of the tumor suppressor DnaJ-like heat shock protein 40 (HLJ1). However, the specific roles and mechanisms of curcumin in regulating the malignant behaviors of non-small cell lung cancer (NSCLC) cells still remain unclear. In this study, we found that curcumin could inhibit the proliferation and invasion of NSCLC cells and induce G0/G1 phase arrest. Metastasis-associated protein 1 (MTA1) overexpression has been detected in a wide variety of aggressive tumors and plays an important role on cell invasion and metastasis. Our results showed that curcumin could effectively inhibit the MTA1 expression of NSCLC cells. Further research on the subsequent mechanism showed that curcumin inhibited the proliferation and invasion of NSCLC cells through MTA1-mediated inactivation of Wnt/β-catenin pathway. Wnt/β-catenin signaling was reported to play a critical cooperative role on promoting lung tumorigenesis. Thus, these investigations provided novel insights into the mechanisms of curcumin on inhibition of NSCLC cell growth and invasion and showed potential therapeutic strategies for NSCLC.  相似文献   

6.

Background

Numerous studies have shown that Id-1 (Inhibitor of differentiation 1) is upregulated in several cancers and associated with tumor malignant characters. However, the clinical significance and biological role of Id-1 in non-small cell lung cancer (NSCLC) remains unclear.

Methods

We used RT-PCR, Western blot and Immunohistochemistry to measure Id-1 expression in NSCLC tissues and matched adjacent noncancerous tissues. The expression pattern of Id-1 in NSCLC tissues was determined by scoring system of immunohistochemical analysis. The Kaplan-Meier method was used to calculate the survival curve, and log-rank test to determine statistical significance. The Id-1 gene was overexpressed or downreuglated with Lentiviral vectors in NSCLC cells. And, the migration ability of NSCLC cells was tested in a Transwell Boyden Chamber.

Results

We found that Id-1 is generally expressed higher in NSCLC tissues compared with matched adjacent noncancerous tissues. We also found that high Id-1 expression in tumor tissues is significantly correlated with tumor progression and poor survival in NSCLC patients. Furthermore, our experimental data revealed that knockdown of Id-1 significantly suppressed the proliferation, migration and invasion of NSCLC cells, whereas ectopic expression of Id-1 promoted the malignant phenotype of NSCLC cells. Mechanistic study showed that NF-κB signaling pathway contributed to the effects of Id-1 in NSCLC cells. Moreover, blocking the NF-κB pathway significantly inhibited the tumor-promoting actions of Id-1 in NSCLC cells.

Conclusions

We identified a tumorigenic role of Id-1 in NSCLC and provided a novel therapeutic target for NSCLC patients.
  相似文献   

7.
Wang CY  Tsai AC  Peng CY  Chang YL  Lee KH  Teng CM  Pan SL 《PloS one》2012,7(2):e31195
The traditional Chinese medicine component dehydrocostuslactone (DHC) isolated from Saussurea costus (Falc.) Lipschitz, has been shown to have anti-cancer activity. Angiogenesis is an essential process in the growth and progression of cancer. In this study, we demonstrated, for the first time, the anti-angiogenic mechanism of action of DHC to be via the induction of cell cycle progression at the G0/G1 phase due to abrogation of the Akt/glycogen synthase kinase-3β (GSK-3β)/cyclin D1 and mTOR signaling pathway. First, we demonstrated that DHC has an anti-angiogenic effect in the matrigel-plug nude mice model and an inhibitory effect on human umbilical vein endothelial cell (HUVEC) proliferation and capillary-like tube formation in vitro. DHC caused G0/G1 cell cycle arrest, which was associated with the down-regulation of cyclin D1 expression, leading to the suppression of retinoblastoma protein phosphorylation and subsequent inhibition of cyclin A and cdk2 expression. With respect to the molecular mechanisms underlying the DHC-induced cyclin D1 down-regulation, this study demonstrated that DHC significantly inhibits Akt expression, resulting in the suppression of GSK-3β phosphorylation and mTOR expression. These effects are capable of regulating cyclin D1 degradation, but they were significantly reversed by constitutively active myristoylated (myr)-Akt. Furthermore, the abrogation of tube formation induced by DHC was also reversed by overexpression of Akt. And the co-treatment with LiCl and DHC significantly reversed the growth inhibition induced by DHC. Taken together, our study has identified Akt/GSK-3β and mTOR as important targets of DHC and has thus highlighted its potential application in angiogenesis-related diseases, such as cancer.  相似文献   

8.
9.
In the present study, we report the effect and molecular mechanism of Ligularia fischeri (LF) on proliferation and migration in human lung cancer cells. LF-mediated inhibition of cell proliferation in p53 wild-type A549 and p53-deficient H1299 cells is accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases and cyclins, resulting in pRb hypophosphorylation and G1 phase cell cycle arrest. In contrast, LF inhibits cell migration in A549 cells, but not in H1299 cells. These regulatory effects of LF on cell proliferation and migration are associated with inactivation of mitogenic signaling pathways such as ERK, Akt and p70S6K, and down-regulation of epidermal growth factor receptor and integrin β1 expression. Collectively, these findings suggest further development and evaluation of LF for the prevention and treatment of lung cancer with mutated p53 as well as wild-type p53.  相似文献   

10.
11.
12.
13.
14.
Non-small cell lung cancer (NSCLC) ranks first among cancer death worldwide. Despite efficacy and safety priority, targeted therapy only benefits ∼30% patients, leading to the unchanged survival rates for whole NSCLC patients. Metabolic reprogramming occurs to offer energy and intermediates for fuelling cancer cells proliferation. Thus, mechanistic insights into metabolic reprogramming may shed light upon NSCLC proliferation and find new proper targets for NSCLC treatment. Herein, we used loss- and gain-of-function experiments to uncover that highly expressed aldo-keto reductase family1 member C1 (AKR1C1) accelerated NSCLC cells proliferation via metabolic reprogramming. Further molecular profiling analyses demonstrated that AKR1C1 augmented the expression of hypoxia-inducible factor 1-alpha (HIF-1α), which could drive tumour metabolic reprogramming. What's more, AKR1C1 significantly correlated with HIF-1α signaling, which predicted poor prognosis for NSCLC patients. Collectively, our data display that AKR1C1 reprograms tumour metabolism to promote NSCLC cells proliferation by activating HIF-1α. These newly acquired data not only establish the specific role for AKR1C1 in metabolic reprogramming, but also hint to the possibility that AKR1C1 may be a new therapeutic target for NSCLC treatment.  相似文献   

15.
16.
MARKs kinase belongs to an AMPK-related family kinase plays a critical role in tumor progression, but its exact role and contribution of four different isoforms remain largely ambiguous. In this study, we used a clinical dataset compiled by The Cancer Genome Atlas (TCGA) and GEO revealed that MARK2 and MARK4 expressions were significantly upregulated in non-small cell lung cancer (NSCLC) compared with normal tissues. Furthermore, expressions of MARK2/4 were highly appeared in advanced stages and associated with the low survival rate of NSCLC patients. Functional assays demonstrated that MARK2/4 deletion or MARKs inhibition significantly suppressed aerobic glycolysis and cell growth in NSCLC cells. Mechanistically, MARK2/4 stimulates the mTOR/HIF-1α pathway and subsequently alleviates AMPK activity via physically associate with Raptor and AMPKα1, thereby facilitating aerobic glycolysis and cell growth in NSCLC cells. However, these effects were markedly reversed by MARKs inhibitor 39621, or MARK2/4 deletion, mTOR inhibitor rapamycin, or AMPK activator AICAR. Together, the data demonstrated that MARK2/4 exerts its oncogenic effects by facilitating metabolic reprogramming in NSCLC cells. Therefore, MARK2/4 might be a potential therapeutic target for lung cancer.  相似文献   

17.
ZC3H13 is a canonical CCCH zinc finger protein, which harbors a somatic frame-shift mutation in colorectal cancer (CRC). However, its expression and biological function were still uncertain. In the current study, we found that ZC3H13 was served as a tumor suppressor in CRC cells, which decreased the expression of Snail, Cyclin D1, and Cyclin E1, and increased the expression of Occludin and Zo-1 through inactivating Ras–ERK signaling pathway. Furthermore, reduction of ZC3H13 associated with advanced TNM stage (p = 0.02), positive regional lymph node metastasis ( p = 0.01). Taken together, the current study indicated that ZC3H13 may be an upstream regulator of Ras–ERK signaling pathway and suppressed invasion and proliferation of CRC.  相似文献   

18.
BackgroundCelecoxib (CXB), a selective COX-2 inhibitor NSAID, has exhibited prominent anti-proliferative potential against numerous cancers. However, its low bioavailability and long term exposure related cardiovascular side effects, limit its clinical application. In order to overcome these limitations, natural bioactive compounds with lower toxicity profile are used in combination with therapeutic drugs. Therfore, in this study Piperine (PIP), a natural chemo-preventive agent possessing drug bioavailability enhancing properties, was considered to be used in combination with low doses of CXB.PurposeWe hypothesized that the combination of PIP with CXB will have a synergistic anti-proliferative effect on colon cancer cells.Study designThe potency of PIP and CXB alone and in combination was evaluated in HT-29 human colon adenocarcinoma cells and mechanism of growth inhibition was investigated by analyzing the players in apoptotic and Wnt/β-catenin signaling pathways.MethodsThe effect of PIP on the oral bioavailability of CXB in mice was investigated using HPLC analysis. The study investigated the synergistic anti-proliferative effect of CXB and PIP on HT-29 cells and IEC-6 non-tumorigenic rat intestinal epithelial cells by SRB cell viability assay. Further, the cellular and molecular mechanism(s) involved in the anti-proliferative combinatorial effect was extensively explored in HT-29 cells by flow cytometry and western blotting. The in vivo efficacy of this combination was studied in CT26.WT tumor syngeneic Balb/c mice model.ResultsPIP as a bioenhancer increased the oral bioavailability of CXB (129%). The IC50 of CXB and PIP were evaluated to select doses for combination treatment of HT-29 cells. The drug combinations having combination index (CI) less than 1 were screened using CompuSyn software. These combinations were significantly cytotoxic to HT-29 cells but IEC-6 were least effected. Further, the mechanism behind CXB and PIP mediated cell death was explored. The co-treatment led to reactive oxygen species generation, mitochondrial dysfunction, caspase activation and enhanced apoptosis in HT-29 cells. Additionally, the combination treatment synergistically modulated Wnt/β-catenin pathway, downregulated the stemness markers and boosted therapeutic response in CT26 syngeneic Balb/c mice.ConclusionThe outcomes of the study suggests that combining CXB and PIP offers a novel approach for the treatment of colon cancer.  相似文献   

19.
Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7δ5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The results showed that IL-7δ5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27(kip1) expression. Mechanistically, we found that IL-7δ5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7δ5. In conclusion, our findings demonstrate that IL-7δ5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7δ5 may be a potential target for human breast cancer therapeutics intervention.  相似文献   

20.

Background

Ovarian cancer G protein coupled receptor 1 (OGR1) mediates inhibitory effects on cell migration in human prostate and ovarian cancer cells. However, the mechanisms and signaling pathways that mediate these inhibitory effects are essentially unknown.

Methods

MCF7 cell line was chosen as a model system to study the mechanisms by which OGR1 regulates cell migration, since it expresses very low levels of endogenous OGR1. Cell migratory activities were assessed using both wound healing and transwell migration assays. The signaling pathways involved were studied using pharmacological inhibitors and genetic forms of the relevant genes, as well as small G protein pull-down activity assays. The expression levels of various signaling molecules were analyzed by Western blot and quantitative PCR analysis.

Results

Over-expression of OGR1 in MCF7 cells substantially enhanced activation of Rho and inhibition of Rac1, resulting in inhibition of cell migration. In addition, expression of the Gα12/13 specific regulator of G protein signaling (RGS) domain of p115RhoGEF, but not treatment with pertussis toxin (PTX, a Gαi specific inhibitor), could abrogate OGR1-dependent Rho activation, Rac1 inactivation, and inhibition of migration in MCF7 cells. The bioactive lipids tested had no effect on OGR1 function in cell migration.

Conclusion

Our data suggest, for the first time, that OGR1 inhibits cell migration through a Gα12/13 -Rho-Rac1 signaling pathway in MCF7 cells. This pathway was not significantly affected by bioactive lipids and all the assays were conducted at constant pH, suggesting a constitutive activity of OGR1. This is the first clear delineation of an OGR1-mediated cell signaling pathway involved in migration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号