首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is increasingly clear that exotic invasive species affect seed-dispersal mutualisms, a synthetic examination of the effect of exotic invasive species on seed-dispersal mutualisms is lacking. Here, we review the impacts of the invasive Argentine ant (Linepithema humile) on seed dispersal. We found that sites with L. humile had 92 per cent fewer native ant seed dispersers than did sites where L. humile was absent. In addition, L. humile did not replace native seed dispersers, as rates of seed removal and seedling establishment were all lower in the presence of L. humile than in its absence. We conclude that potential shifts in plant diversity and concomitant changes in ecosystem function may be a consequence of Argentine ant invasions, as well as invasions by other ant species. Because very few studies have examined the effects of non-ant invasive species on seed-dispersal mutualisms, the prevalence of disruption of seed-dispersal mutualisms by invasive species is unclear.  相似文献   

2.
The increasing numbers of invasive species have stimulated the study of the underlying causes promoting the establishment and spread of exotic species. We tracked the spread of the highly invasive Argentine ant (Linepithema humile) along an environmental and habitat gradient on the northeastern Iberian Peninsula to determine the role of climatic, habitat and biotic variables on the rate of spread, and examine impact on native ant communities. We found the species well-established within natural environments. The mean annual rate of spread of the invasion (7.94 ± 2.99 m/year) was relatively low compared to other studies, suggesting that resistance posed by native ants in natural environments with no or low human disturbance might delay (although not prevent) the spread of the invasion irrespectively of the land-use type. Factors related to the distance to urban areas and characteristics of native and introduced populations explained the rate of spread of the invasion, while habitat-related variables determined the distribution of native ants and the impact of the Argentine ant on them. Native ant communities became more homogeneous following the invasion due to the decline of species richness and abundance. Only few species (Plagiolepis pygmaea and Temnothorax spp.) were able to cope with the spread of the invasion, and were possibly favored by the local extinction of other ant species. Taken together, our results indicate that land uses per se do not directly affect the spread of L. humile, but influence its invasive success by molding the configuration of native ant communities and the abiotic suitability of the site.  相似文献   

3.
Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4?years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.  相似文献   

4.
Heller NE  Sanders NJ  Shors JW  Gordon DM 《Oecologia》2008,155(2):385-395
Climate change may exacerbate invasions by making conditions more favorable to introduced species relative to native species. Here we used data obtained during a long-term biannual survey of the distribution of ant species in a 481-ha preserve in northern California to assess the influence of interannual variation in rainfall on the spread of invasive Argentine ants, Linepithema humile, and the displacement of native ant species. Since the survey began in 1993, Argentine ants have expanded their range into 74 new hectares. Many invaded hectares were later abandoned, so the range of Argentine ants increased in some years and decreased in others. Rainfall predicted both range expansion and interannual changes in the distribution of Argentine ants: high rainfall, particularly in summer months, promoted their spread in the summer. This suggests that an increase in rainfall will promote a wider distribution of Argentine ants and increase their spread into new areas in California. Surprisingly, the distribution of two native ant species also increased following high rainfall, but only in areas of the preserve that were invaded by L. humile. Rainfall did not have a negative impact on total native ant species richness in invaded areas. Instead, native ant species richness in invaded areas increased significantly over the 13 years of observation. This suggests that the impact of Argentine ants on naïve ant communities may be most severe early in the invasion process.  相似文献   

5.
Ecological dominance in ants is often fuelled by carbohydrate intake. Most studies have focused on the importance of invasive ant mutualistic associations with trophobionts whereas few studies have investigated the importance of floral nectar on invasion success. In this study, utilisation of temporarily available floral nectar by the invasive Argentine ant, Linepithema humile, was compared to that of the dominant native ant, Anoplolepis custodiens, within the Cape Floristic Region (CFR), a biodiversity hotspot. The effect of these two focal ant species on species composition and abundance of ground foraging ants as well as floral arthropod visitors in inflorescences of Proteacea species was assessed. Foraging activity, and trophic ecology inferred from the abundance of natural stable isotopes of Carbon (δ13C) and Nitrogen (δ15N), and the ratio of Carbon to Nitrogen (C:N) were compared between the two ant species during three flowering periods. Linepithema humile significantly reduced the abundance and species diversity of both above-ground and floral arthropod species abundance and composition. Linepithema humile increased its foraging activity with increasing nectar availability, switching its diet to a more herbivorous one. Anoplolepis custodiens did not respond as effectively to increasing floral nectar or negatively impact floral arthropod visitors. This study showed that the availability of floral nectar and ability of L. humile to more effectively utilise this temporarily available resource than native ants, can contribute significantly to the further spread and persistence of L. humile in natural environments in the CFR.  相似文献   

6.
Invasive species, where successful, can devastate native communities. We studied the dynamics of the invasive Argentine ant, Linepithema humile, for 7 years in Jasper Ridge, a biological preserve in northern California. We monitored the distributions at the hectare scale of native ant taxa and L. humile in the spring and fall from 1993 to 1999. We also studied the invasion dynamics at a finer resolution by searching for ants in 1-m2 plots. Our results are similar at both scales. The distributions of several native species are not random with regard to L. humile; the distributions of several epigeic species with similar habitat affinities overlap much less frequently than expected with the distribution of L. humile. We found that season had a significant influence on the distributions of L. humile and several native taxa. Over the 7-year period, L. humile has increased its range size in Jasper Ridge largely at the expense of native taxa, but there is seasonal and yearly variation in this rate of increase. Studies of invasions in progress which sample across seasons and years may help to predict the spread and effects of invasive species.  相似文献   

7.
1. The spread of Argentine ants, Linepithema humile (Mayr), in introduced areas is mainly through the displacement of native ant species owing to high inter‐specific competition. In South Africa, L. humile has not established in the climatically suitable eastern and northern escarpments dominated by the African big headed ant, Pheidole megacephala (Fabricius), probably owing to local biotic resistance. 2. Inter‐specific aggression, at the individual and colony level, and competition for a shared resource were evaluated in the laboratory. 3. Aggression between the two ant species was very high in all of the assays. Both species suffered similar mortality rates during one‐on‐one aggression assays, however, during symmetrical group confrontations, L. humile workers showed significantly higher mortality rates than P. megacephala workers. During asymmetrical group confrontations both species killed more of the other ant species when they had numeric advantage. Both ant species located the shared resource at the same time; however, once P. megacephala discovered the bait, they displaced L. humile from the bait through high inter‐specific aggression, thereafter dominating the bait for the remainder of the trial. 4. The results demonstrate the potential of P. megacephala to prevent the establishment and survival of incipient L. humile colonies through enhanced resource competition and high inter‐specific aggression. This is the first study to indicate potential biotic resistance to the spread of L. humile in South Africa.  相似文献   

8.
Introduction experiments may prove useful in understanding the mechanisms underlying the successful establishment of invasive ant species into new areas. These manipulative introductions could be particularly helpful in exploring the interactions between invasive species and the local fauna and flora. However, the inherent risk of accidental establishment in such experiments poses unacceptable ethical concerns. Some of the worst invasive species are tramp ant species, which can adversely affect biodiversity and community structure after establishment. We conducted laboratory and field experiments investigating a safe methodology for carrying out introduction experiments using the sterile workers of the invasive Argentine ant, Linepithema humile, as a model. We found no difference in foraging rate between worker-only colonies of L. humile and complete colonies, containing queens, workers and brood. Worker-only L. humile colonies showed the same exploitative and interference ability as complete colonies in bait dominance trials with the odorous house ant, Tapinoma sessile, in both laboratory and field trials. We suggest that for those invasive ant species with sterile workers, worker-only colonies may be substituted for complete colonies in short-term field experiments in new areas. Received 18 January 2007; revised 19 June 2007; accepted 22 June 2007.  相似文献   

9.
By disrupting the structure of native ant assemblages, invasive ants can have effects across trophic levels. Most studies to date, however, have focused on the impacts just two species (Linepithema humile and Solenopsis invicta). The impacts of many other invasive ant species on ecological processes in their introduced range are unknown. In this study we tested the hypothesis that the invasive ant Pachycondyla chinensis disrupts ant-seed dispersal mutualisms by displacing native ant species, especially the keystone mutualist Aphaenogaster rudis, while failing to disperse seeds itself. In a paired design we measured the impact of P. chinensis on the native ant-plant seed dispersal mutualism. The number of A. rudis workers was 96% lower in invaded than in intact plots, and the number of seeds removed was 70% lower in these plots. Finally, in invaded plots the abundance of Hexastylis arifolia, a locally abundant myrmecochorous plant, was 50% lower than in plots where P. chinensis was absent. A parsimonious interpretation of our results is that P. chinensis causes precipitous declines in the abundance of A. rudis within invaded communities, thereby disrupting the ant-plant seed dispersal mutualisms and reducing abundances of ant-dispersed plants. In sum, the magnitude of the effects of P. chinensis on seed dispersal is quantitatively similar to that documented for the intensively studied invasive Argentine ant. We suggest that more studies on the impacts of less-studied invasive ant species on seed dispersal mutualisms may increase our knowledge of the effects of these invaders on ecosystem function.  相似文献   

10.
The Argentine ant Linepithema humile (Mayr) invaded the Hiroshima Prefecture in south‐west Japan some time before 1990. In this report, we describe the distribution of this exotic ant species and assess its impact on indigenous ant communities in urban areas. L. humile is now widely distributed mainly in urban areas and surrounding secondary vegetation of the cities Hatsukaichi and Hiroshima. The impact assessment suggested that L. humile reduced species diversity of local, indigenous ant communities. There was differential sensitivity of indigenous ant species to the invasion of L. humile. Some ant species disappeared in parks infested with L. humile; for example, Pheidole noda, Pheidole indica and Lasius japonicus. L. humile seemed to be superior to these ant species in certain traits and habits, such as mobility, recruitment ability, aggressiveness and omnivory. In contrast, Paratrechina sakurae and Camponotus vitiosus were less affected by L. humile infestation. The mechanisms allowing such coexistence seemed to be small body size (P. sakurae) and arboreal nesting habits (C. vitiosus).  相似文献   

11.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

12.
Biological invasions represent a serious threat for the conservation of biodiversity in many ecosystems. While many social insect species and in particular ant species have been introduced outside their native ranges, few species have been successful at invading temperate forests. In this study, we document for the first time the relationship between the abundance of the introduced ant, Pachycondyla chinensis, in mature forests of North Carolina and the composition, abundance and diversity of native ant species using both a matched pair approach and generalized linear models. Where present, P. chinensis was more abundant than all native species combined. The diversity and abundance of native ants in general and many individual species were negatively associated with the presence and abundance of P. chinensis. These patterns held regardless of our statistical approach and across spatial scales. Interestingly, while the majority of ant species was strongly and negatively correlated with the abundance and presence of P. chinensis, a small subset of ant species larger than P. chinensis was either as abundant or even more abundant in invaded than in uninvaded sites. The large geographic range of this ant species combined with its apparent impact on native species make it likely to have cascading consequences on eastern forests in years to come, effects mediated by the specifics of its life history which is very different from those of other invasive ants. The apparent ecological impacts of P. chinensis are in addition to public health concerns associated with this species due to its sometimes, deadly sting.  相似文献   

13.
Analysis of long‐term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species’ limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree‐day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species’ current and future worldwide distribution.  相似文献   

14.
To assess the importance of competition in the advance of invasive species, bait stations have been used to determine the dominance hierarchy of a community of native ants in Doñana National Park, southern Spain, and the status of the introduced species Linepithema humile (Argentine ant). Some native species, e.g. Cataglyphis floricola or Camponotus pilicornis, seem to be subordinate, i.e. occupy a low position in the competitive hierarchy; some are dominant (e.g. Pheidole pallidula), and others (e.g. Aphaenogaster senilis) occupy an intermediate position in the hierarchy. The Argentine ant is a competitively dominant species, because of its aggressive behavior and relative abundance. Irrespective of their position in the dominance hierarchy, L. humile and some native species adopt what games theory terms “the bourgeois strategy” during agonistic encounters with other species. Lone workers tend to be submissive in encounters whereas workers in the presence of other colony members are aggressive. L. humile was the only species which aggressively displaced large numbers of ants of other species from the bait. L. humile also expanded its range in the course of the experiment, displacing native species from parts of the study area.  相似文献   

15.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

16.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

17.
Argentine ants (Linepithema humile) usually actively displace native ants through a combination of rapid recruitment, high numerical dominance and intense aggressive fights. However, in some cases, native ants can offer a strong resistance. In Corsica, a French Mediterranean island, local resistance by the dominant Tapinoma nigerrimum has been proposed as a factor limiting Argentine ant invasion. With the aim of evaluating the abilities of T. nigerrimum in interference and exploitative competition, this study tested in the laboratory the aggressive interactions between this native dominant ant and the invasive Argentine ant. We used four different assays between L. humile and T. nigerrimum: (1) worker dyadic interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a competition for space and food. This study confirms the ability of Argentine ants to compete with native species, by initiating more fights, using cooperation and simultaneously deploying physical and chemical defenses. However, despite Argentine ant fighting capabilities, T. nigerrimum was more efficient in both interference and exploitative competition. Its superiority was obvious in the space and food competition assays, where T. nigerrimum dominated food in 100% of the replicates after 1 h and invaded Argentine ant nests while the reverse was never observed. The death feigning behavior exhibited by Argentine ant workers also suggests the native ant’s superiority. Our study thus demonstrates that T. nigerrimum can offer strong competition and so may be able to limit the spread of Argentine ants in Corsica. This confirms that interspecific competition from ecologically dominant native species can affect the invasion success of invaders, notably by decreasing the likelihood of incipient colony establishment and survival.  相似文献   

18.
We applied the loop-mediated isothermal amplification (LAMP) assay to monitor invasions of Linepithema humile (Mayr), the Argentine ant, a notorious invasive insect worldwide. Species-specific LAMP primers were designed on the basis of the partial sequence of the cytochrome c oxidase subunit I region of Lhumile. The species specificity and sensitivity of these primers were determined in the laboratory and considered adequate for practical use. We also confirmed that the assay successfully detected Lhumile from captures of pan traps, which contained Lhumile and several non-target ant species. The assay detected the target species even when the captures contained only a leg or an antenna. Since the LAMP assay is simple and rapid, this assay will contribute to the early detection and accurate identification of Lhumile.  相似文献   

19.
The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause–effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low‐nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen‐provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile – an invasive species that has transitioned towards greater consumption of sugar‐rich, nitrogen‐poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight‐year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen‐provisioning symbioses in Argentine ant's dietary shift.  相似文献   

20.
Following its introduction from Asia to the USA, the Asian needle ant (Pachycondyla chinensis) is rapidly spreading into a wide range of habitats with great negative ecological affects. In addition, the species is a concern for human health because of its powerful, sometimes deadly, sting. Here, we assessed the potential of P. chinensis to spread further and to invade entirely new regions. We used species distribution models to assess suitable areas under current climatic conditions and in 2020, 2050 and 2080. With a consensus model, combining five different modelling techniques, three Global Circulation (climatic) Models and two CO2 emission scenarios, we generated world maps with suitable climatic conditions. Our models suggest that the species currently has a far greater potential distribution than its current exotic range, including large parts of the world landmass, including Northeast America, Southeast Asia and Southeast America. Climate change is predicted to greatly exacerbate the risk of P. chinensis invasion by increasing the suitable landmass by 64.9% worldwide, with large increases in Europe (+210.1%), Oceania (+75.1%), North America (+74.9%) and Asia (+62.7%). The results of our study suggest P. chinensis deserves increased attention, especially in the light of on-going climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号