首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to provide better fisheries management and conservation decisions, there is a need to discern the underlying relationship between the spawning stock and recruitment of marine fishes, a relationship which is influenced by the environmental conditions. Here, we demonstrate how the environmental conditions (temperature and the food availability for fish larvae) influence the stock–recruitment relationship and indeed what kind of stock–recruitment relationship we might see under different environmental conditions. Using unique zooplankton data from the Continuous Plankton Recorder, we find that food availability (i.e. zooplankton) in essence determines which model applies for the once large North Sea cod (Gadus morhua) stock. Further, we show that recruitment is strengthened during cold years and weakened during warm years. Our combined model explained 45 per cent of the total variance in cod recruitment, while the traditional Ricker and Beverton–Holt models only explained about 10 per cent. Specifically, our approach predicts that a full recovery of the North Sea cod stock might not be expected until the environment becomes more favourable.  相似文献   

2.
In contrast to freshwater fish it is presumed that marine fish are unlikely to spawn with close relatives due to the dilution effect of large breeding populations and their propensity for movement and reproductive mixing. Inbreeding is therefore not typically a focal concern of marine fish management. We measured the effective number of breeders in 6 New York estuaries for winter flounder (Pseudopleuronectes americanus), a formerly abundant fish, using 11 microsatellite markers (6–56 alleles per locus). The effective number of breeders for 1–2 years was remarkably small, with point estimates ranging from 65–289 individuals. Excess homozygosity was detected at 10 loci in all bays (FIS = 0.169–0.283) and individuals exhibited high average internal relatedness (IR; mean = 0.226). These both indicate that inbreeding is very common in all bays, after testing for and ruling out alternative explanations such as technical and sampling artifacts. This study demonstrates that even historically common marine fish can be prone to inbreeding, a factor that should be considered in fisheries management and conservation plans.  相似文献   

3.
As the timing of spring productivity blooms in near-shore areas advances due to warming trends in global climate, the selection pressures on out-migrating salmon smolts are shifting. Species and stocks that leave natal streams earlier may be favoured over later-migrating fish. The low post-release survival of hatchery fish during recent years may be in part due to static release times that do not take the timing of plankton blooms into account. This study examined the effects of release time on the migratory behaviour and survival of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) using acoustic and coded-wire telemetry. Plankton monitoring and near-shore seining were also conducted to determine which habitat and food sources were favoured. Acoustic tags (n = 140) and coded-wire tags (n = 266,692) were implanted into coho salmon smolts at the Seymour and Quinsam Rivers, in British Columbia, Canada. Differences between wild and hatchery fish, and early and late releases were examined during the entire lifecycle. Physiological sampling was also carried out on 30 fish from each release group. The smolt-to-adult survival of coho salmon released during periods of high marine productivity was 1.5- to 3-fold greater than those released both before and after, and the fish''s degree of smoltification affected their downstream migration time and duration of stay in the estuary. Therefore, hatchery managers should consider having smolts fully developed and ready for release during the peak of the near-shore plankton blooms. Monitoring chlorophyll a levels and water temperature early in the spring could provide a forecast of the timing of these blooms, giving hatcheries time to adjust their release schedule.  相似文献   

4.
Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation exhibited among individual fish within a stock can complicate these efforts.  相似文献   

5.

Background

Hatchery-induced selection and direct effects of the culture environment can both cause captively bred fish populations to survive at low rates and behave unnaturally in the wild. New approaches to fish rearing in conservation hatcheries seek to reduce hatchery-induced selection, maintain genetic resources, and improve the survival of released fish.

Methodology/Principal Findings

This study used acoustic telemetry to compare three years of early marine survival estimates for two wild steelhead populations to survival of two populations raised at two different conservation hatcheries located within the Hood Canal watershed. Steelhead smolts from one conservation hatchery survived with probabilities similar to the two wild populations (freshwater: 95.8–96.9%, early marine: 10.0–15.9%), while smolts from the other conservation hatchery exhibited reduced freshwater and early marine survival (freshwater: 50.2–58.7%, early marine: 2.6–5.1%). Freshwater and marine travel rates did not differ significantly between wild and hatchery individuals from the same stock, though hatchery smolts did display reduced migration ranges within Hood Canal. Between-hatchery differences in rearing density and vessel geometry likely affected survival and behavior after release and contributed to greater variation between hatcheries than between wild populations.

Conclusions/Significance

Our results suggest that hatchery-reared smolts can achieve early marine survival rates similar to wild smolt survival rates, and that migration performance of hatchery-reared steelhead can vary substantially depending on the environmental conditions and practices employed during captivity.  相似文献   

6.
The Atlantic salmon (Salmo salar) is a charismatic anadromous fish of high conservation and economic value. Concerns have been expressed regarding the long-term viability of fisheries throughout the species''s distributional range because of abundance variations that cannot currently be explained or predicted. Here, we analyse long-term catch data obtained over a wide geographical range and across a range of spatial subscales to understand more fully the factors that drive population abundance. We use rod catch data from 84 Norwegian rivers over 125 years (1876–2000) and 48 Scottish rivers over 51 years (1952–2002). The temporal correlation in catches is very long-term, with trends persisting over several decades. The spatial correlation is relatively short-range, indicating strong local-scale effects on catch. Furthermore, Scottish salmon populations exhibit recent negative trends in contrast to some more positive trends in Norway—especially in the north.  相似文献   

7.
The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada''s Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.  相似文献   

8.
The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.  相似文献   

9.
Selective harvest regimes are often focused on males resulting in skewed sex-ratios, and for many ungulate species this strategy is sustainable. However, muskoxen (Ovibos moschatus) are very social and mature bulls (≥4 years old), particularly prime-age bulls (6–10 years old), play important roles in predator defense and recruitment. A year-round social structure incorporating large males into mixed-sex groups could make this species more susceptible to the effects of selective harvest if population composition and sex-ratios influence overall survival and reproductive success. Using detailed data collected on the muskox population occupying the Seward Peninsula, Alaska during 2002–2012, we formulated the hypothesis that the selective harvest of mature bulls may be related to documented changes in population composition and growth rates in this species. In addition, we reviewed existing published information from two other populations in Alaska, the Cape Thompson and Northeastern populations, to compare population growth rates among the three areas under differential harvest rates relative to our hypothesis. We found that on the Seward Peninsula, mature bull:adult cow ratios declined 4–12%/year and short-yearling:adult cow ratios (i.e., recruitment) declined 8–9%/year in the most heavily harvested areas. Growth rates in all 3 populations decreased disproportionately after increases in the number of bulls harvested, and calf:cow ratios declined in the Northeastern population as harvest increased. While lack of appropriate data prevented us from excluding other potential causes such as density dependent effects and changes in predator densities, our results did align with our hypothesis, suggesting that in the interest of conservation, harvest of mature males should be restricted until causal factors can be more definitively identified. If confirmed by additional research, our findings would have important implications for harvest management and conservation of muskoxen and other ungulate species with similar life-histories.  相似文献   

10.
Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection.  相似文献   

11.

Background

Marine populations have been declining at a worrying rate, due in large part to fishing pressures. The challenge is to secure a future for marine life while minimizing impacts on fishers and fishing communities.

Methods and Principal Findings

Rather than selecting areas where fishing is banned – as is usually the case with spatial management – we assess the concept of designating areas where fishing is permitted. We use spatial catch statistics for thirteen commercial fisheries on Canada''s west coast to determine the minimum area that would be needed to maintain a pre-ascribed target percentage of current catches. We found that small reductions in fisheries yields, if strategically allocated, could result in large unfished areas that are representative of biophysical regions and habitat types, and have the potential to achieve remarkable conservation gains.

Conclusions

Our approach of selecting fishing areas instead of reserves could help redirect debate about the relative values that society places on conservation and extraction, in a framework that could gain much by losing little. Our ideas are intended to promote discussions about the current status quo in fisheries management, rather than providing a definitive solution.  相似文献   

12.
The paper reviews the main findings of rocky shore and subtidal nearshore experimental marine ecology (EME) in cold and temperate marine ecosystems during the past four decades. It analyzes the role of EME in coastal management and conservation. The historical development of strategies for managing single or multispecies fisheries are reviewed. The published results show over-exploitation and depletion of more than 60% of the fish stocks and a lack of connection between the management of fisheries and results derived from experimental marine ecology. This is mainly due to: (a) the different temporal and spatial scale at which most marine ecologists and fishery managers operate; (b) the lack of long-term fishery monitoring and adaptive techniques for management; and (c) limitations in the design of experiments on fisheries. Large-scale oceanic perturbations, due to combinations of excessive resource exploitation and environmental variability coupled with present trends in management approaches are discussed. Modern approaches and tools for management of fisheries, such as Adaptive Management (AM), Territorial User Rights in Fisheries (TURFs), Individual Transferrable Quotas and Non-Transferrable Quotas (ITQs, INTQs) are discussed in the context of small-scale fisheries and EME. Published views on limits of applied ecological research with regards to management of fisheries are discussed. Linkages between EME, marine conservation and the establishment of Marine Protected Areas (MPAs) and experimental exclusions of humans are highlighted. Results derived from MPAs, such as: (a) species or community trophic cascades, and (b) the role of key-stone species and species interaction strengths, are discussed. It is concluded that the role of EME in conservation has been greater than has been the case in management of fisheries. The potential to link EME, conservation and the management of fisheries is exemplified through the proposed establishment in Chile of a connected network of Scientific Reserves, MPAs and TURFs sites. The final conclusion is that to cross-fertilize EME, conservation and management, there are three main challenges: (1) to end the traditional view of approaching the management of fisheries and marine conservation as contradictory/antagonizing issues; (2) to improve communications between experimental marine ecology and the management of fisheries through the implementation of experimentation and adaptive management; (3) to improve linkages between marine conservation, the management of fisheries and social sciences.  相似文献   

13.
Predictions on the efficacy of marine reserves for benefiting fisheries differ in large part due to considerations of models of either intra- or inter-cohort population density regulating fish recruitment. Here, I consider both processes acting on recruitment and show using a bioeconomic model how for many fisheries density dependent recruitment dynamics interact with harvest costs to influence fishery profit with reserves. Reserves consolidate fishing effort, favoring fisheries that can profitably harvest low-density stocks of species where adult density mediates recruitment. Conversely, proportion coastline in reserves that maximizes profit, and relative improvement in profit from reserves over conventional management, decline with increasing harvest costs and the relative importance of intra-cohort density dependence. Reserves never increase profit when harvest cost is high, regardless of density dependent recruitment dynamics. I quantitatively synthesize diverse results in the literature, show disproportionate effects on the economic performance of reserves from considering only inter- or intra-cohort density dependence, and highlight fish population and fishery dynamics predicted to be complementary to reserve management. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Incorporating host-pathogen(s)-environment axes into management and conservation planning is critical to preserving species in a warming climate. However, the role pathogens play in host stress resilience remains largely unexplored in wild animal populations. We experimentally characterized how independent and cumulative stressors (fisheries handling, high water temperature) and natural infections affected the health and longevity of released wild adult sockeye salmon (Oncorhynchus nerka) in British Columbia, Canada. Returning adults were collected before and after entering the Fraser River, yielding marine- and river-collected groups, respectively (N = 185). Fish were exposed to a mild (seine) or severe (gill net) fishery treatment at collection, and then held in flow-through freshwater tanks for up to four weeks at historical (14°C) or projected migration temperatures (18°C). Using weekly nonlethal gill biopsies and high-throughput qPCR, we quantified loads of up to 46 pathogens with host stress and immune gene expression. Marine-collected fish had less severe infections than river-collected fish, a short migration distance (100 km, 5–7 days) that produced profound infection differences. At 14°C, river-collected fish survived 1–2 weeks less than marine-collected fish. All fish held at 18°C died within 4 weeks unless they experienced minimal handling. Gene expression correlated with infections in river-collected fish, while marine-collected fish were more stressor-responsive. Cumulative stressors were detrimental regardless of infections or collection location, probably due to extreme physiological disturbance. Because river-derived infections correlated with single stressor responses, river entry probably decreases stressor resilience of adult salmon by altering both physiology and pathogen burdens, which redirect host responses toward disease resistance.  相似文献   

15.
Fishes farmed in sea pens may become infested by parasites from wild fishes and in turn become point sources for parasites. Sea lice, copepods of the family Caligidae, are the best-studied example of this risk. Sea lice are the most significant parasitic pathogen in salmon farming in Europe and the Americas, are estimated to cost the world industry €300 million a year and may also be pathogenic to wild fishes under natural conditions.Epizootics, characteristically dominated by juvenile (copepodite and chalimus) stages, have repeatedly occurred on juvenile wild salmonids in areas where farms have sea lice infestations, but have not been recorded elsewhere. This paper synthesizes the literature, including modelling studies, to provide an understanding of how one species, the salmon louse, Lepeophtheirus salmonis, can infest wild salmonids from farm sources. Three-dimensional hydrographic models predicted the distribution of the planktonic salmon lice larvae best when they accounted for wind-driven surface currents and larval behaviour. Caligus species can also cause problems on farms and transfer from farms to wild fishes, and this genus is cosmopolitan. Sea lice thus threaten finfish farming worldwide, but with the possible exception of L. salmonis, their host relationships and transmission adaptations are unknown. The increasing evidence that lice from farms can be a significant cause of mortality on nearby wild fish populations provides an additional challenge to controlling lice on the farms and also raises conservation, economic and political issues about how to balance aquaculture and fisheries resource management.  相似文献   

16.
Large Marine Ecosystems such as the Canary Current system off West Africa sustains high abundance of small pelagic prey, which attracts marine predators. Seabirds are top predators often used as biodiversity surrogates and sentinel species of the marine ecosystem health, thus frequently informing marine conservation planning. This study presents the first data on the spatial (GPS-loggers) and trophic (stable isotope analysis) ecology of a tropical seabird—the endangered Cape Verde shearwater Calonectris edwardsii–during both the incubation and the chick-rearing periods of two consecutive years. This information was related with marine environmental predictors (species distribution models), existent areas of conservation concern for seabirds (i.e. marine Important Bird Areas; marine IBAs) and threats to the marine environment in the West African areas heavily used by the shearwaters. There was an apparent inter-annual consistency on the spatial, foraging and trophic ecology of Cape Verde shearwater, but a strong alteration on the foraging strategies of adult breeders among breeding phases (i.e. from incubation to chick-rearing). During incubation, birds mostly targeted a discrete region off West Africa, known by its enhanced productivity profile and thus also highly exploited by international industrial fishery fleets. When chick-rearing, adults exploited the comparatively less productive tropical environment within the islands of Cape Verde, at relatively close distance from their breeding colony. The species enlarged its trophic niche and increased the trophic level of their prey from incubation to chick-rearing, likely to provision their chicks with a more diversified and better quality diet. There was a high overlap between the Cape Verde shearwaters foraging areas with those of European shearwater species that overwinter in this area and known areas of megafauna bycatch off West Africa, but very little overlap with existing Marine Important Bird Areas. Further investigation on the potential nefarious effects of fisheries on seabird communities exploiting the Canary Current system off West Africa is needed. Such negative effects could be alleviated or even dissipated if the ‘fisheries-conservation hotspots’ identified for the region, would be legislated as Marine Protected Areas.  相似文献   

17.
Altered river flows and fragmented habitats often simplify riverine communities and favor non‐native fishes, but their influence on life‐history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time‐ and size‐selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.  相似文献   

18.
Accumulating evidence shows that environmental fluctuations and exploitation jointly affect marine fish populations, and understanding their interaction is a key issue for fisheries ecology. In particular, it has been proposed that age truncation induced by fisheries exploitation may increase the population's sensitivity to climate. In this study, we use unique long‐term abundance data for the Northeast Arctic stock of cod (Gadus morhua) and the Norwegian Spring‐Spawning stock of herring (Clupea harengus), which we analyze using techniques based on age‐structured population matrices. After identifying time periods with different age distributions in the spawning stock, we use linear models to quantify the relative effect of exploitation and temperature on the population growth rates. For the two populations, age truncation was found to be associated with an increasing importance of temperature and a relatively decreasing importance of exploitation, while the population growth rate became increasingly sensitive to recruitment variations. The results suggested that the removal of older age classes reduced the buffering capacity of the population, thereby making the population growth rate more dependent on recruitment than adult survival and increasing the effect of environmental fluctuations. Age structure appeared as a key characteristic that can affect the response of fish stocks to climate variations and its consequences may be of key importance for conservation and management.  相似文献   

19.
Hematodinium is a parasitic dinoflagellate and emerging pathogen of crustaceans. It preferably manifests in haemolymph of marine decapod crustaceans, killing a large variety of genera with significant impacts on fisheries worldwide. There is, however, evidence that some crustacean stocks harbor high prevalence, low intensity infections that may not result in widespread host mortality and are therefore hard to detect. The most widely used methods for detection of Hematodinium are conventional blood smears and polymerase chain reaction (PCR) against ribosomal RNAs. Blood smears demand a trained investigator, are labor intensive and not readily scalable for high-throughput sampling. PCRs only detect parasite DNA and can also suffer from false negatives and positives. In order to develop alternative detection tools for Hematodinium cells in decapod crustaceans we employed an immunological approach against a newly identified, abundant dinoflagellate-specific nuclear protein—Dinoflagellate/Viral NucleoProtein (DVNP). Both immunofluorescence assay (IFA) and Western blot methods against DVNP showed high sensitivity of detection. The Western blot detects Hematodinium parasites to levels of 25 parasites per milliliter of crustacean haemolymph, with the potential for sample pooling and screening of large samples. Using both PCR and these new tools, we have identified Hematodinium cells present in three new host crab taxa, at high prevalence but with no sign of pathogenesis. This extends the known range of Hematodinium to southern Australia.  相似文献   

20.
Cormorants and other wildlife populations have come in real or perceived conflicts with humans over exploited fish stocks. From gut contents of cormorants, and using an extension of the Catch equation, we estimated the degree of short term competition between great cormorants and coastal fisheries in two areas along the Swedish Baltic Sea. Cormorants consumed 10 and 44%, in respective area, of the fish biomass of six fish species harvested by humans; eel, flounder, herring, perch, pike, and whitefish. On average, cormorants consumed smaller individuals than harvested in fisheries. But for perch, cod and flounder, cormorants consumed harvestable sized fish corresponding >20% of human catches. Our competition model estimated the direct decrease in fisheries catches due to cormorant predation to be <10% for all species except flounder (>30%) and perch (2–20%). When also including the indirect effects of cormorant predation on smaller fish that never reached harvestable size, the estimated decrease in fisheries catches at least doubled for perch (13–34%) and pike (8–19%). Despite large uncertainties, our model indicates that cormorants may locally have a direct impact on human catches of at least flounder, and when incorporating indirect effects also on perch and pike. The study indicates that the degree of competition between cormorants and humans varies substantially between areas. We also included economical values in the model and concluded that for the commercially most important species, eel and cod, the estimated economic impact of cormorants on fisheries was low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号