首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel sequences are DNA sequences present in an individual''s genome but absent in the human reference assembly. They are predicted to be biologically important, both individual and population specific, and consistent with the known human migration paths. Recent works have shown that an average person harbors 2–5 Mb of such sequences and estimated that the human pan-genome contains as high as 19–40 Mb of novel sequences. To identify them in a de novo genome assembly, some existing sequence aligners have been used but no computational method has been specifically proposed for this task. In this work, we developed NSIT (Novel Sequence Identification Tool), a software that can accurately and efficiently identify novel sequences in an individual''s de novo whole genome assembly. We identified and characterized 1.1 Mb, 1.2 Mb, and 1.0 Mb of novel sequences in NA18507 (African), YH (Asian), and NA12878 (European) de novo genome assemblies, respectively. Our results show very high concordance with the previous work using the respective reference assembly. In addition, our results using the latest human reference assembly suggest that the amount of novel sequences per individual may not be as high as previously reported. We additionally developed a graphical viewer for comparisons of novel sequence contents. The viewer also helped in identifying sequence contamination; we found 130 kb of Epstein-Barr virus sequence in the previously published NA18507 novel sequences as well as 287 kb of zebrafish repeats in NA12878 de novo assembly. NSIT requires 2GB of RAM and 1.5–2 hrs on a commodity desktop. The program is applicable to input assemblies with varying contig/scaffold sizes, ranging from 100 bp to as high as 50 Mb. It works in both 32-bit and 64-bit systems and outperforms, by large margins, other fast sequence aligners previously applied to this task. To our knowledge, NSIT is the first software designed specifically for novel sequence identification in a de novo human genome assembly.  相似文献   

2.
3.
4.
5.
6.
7.
Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today''s next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22–82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4–97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2–71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well.  相似文献   

8.
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast.  相似文献   

9.

Background

In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned.

Results

For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1–3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5.

Conclusions

Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1578-1) contains supplementary material, which is available to authorized users.  相似文献   

10.
De novo prediction of protein structures, the prediction of structures from amino acid sequences which are not similar to those of hitherto resolved structures, has been one of the major challenges in molecular biophysics. In this paper, we develop a new method of de novo prediction, which combines the fragment assembly method and the simulation of physical folding process: structures which have consistently assembled fragments are dynamically searched by Langevin molecular dynamics of conformational change. The benchmarking test shows that the prediction is improved when the candidate structures are cross-checked by an empirically derived score function.  相似文献   

11.
It is generally thought that the promoters of non-segmented, negative strand RNA viruses (nsNSVs) direct the polymerase to initiate RNA synthesis exclusively opposite the 3´ terminal nucleotide of the genome RNA by a de novo (primer independent) initiation mechanism. However, recent studies have revealed that there is diversity between different nsNSVs with pneumovirus promoters directing the polymerase to initiate at positions 1 and 3 of the genome, and ebolavirus polymerases being able to initiate at position 2 on the template. Studies with other RNA viruses have shown that polymerases that engage in de novo initiation opposite position 1 typically have structural features to stabilize the initiation complex and ensure efficient and accurate initiation. This raised the question of whether different nsNSV polymerases have evolved fundamentally different structural properties to facilitate initiation at different sites on their promoters. Here we examined the functional properties of polymerases of respiratory syncytial virus (RSV), a pneumovirus, human parainfluenza virus type 3 (PIV-3), a paramyxovirus, and Marburg virus (MARV), a filovirus, both on their cognate promoters and on promoters of other viruses. We found that in contrast to the RSV polymerase, which initiated at positions 1 and 3 of its promoter, the PIV-3 and MARV polymerases initiated exclusively at position 1 on their cognate promoters. However, all three polymerases could recognize and initiate from heterologous promoters, with the promoter sequence playing a key role in determining initiation site selection. In addition to examining de novo initiation, we also compared the ability of the RSV and PIV-3 polymerases to engage in back-priming, an activity in which the promoter template is folded into a secondary structure and nucleotides are added to the template 3´ end. This analysis showed that whereas the RSV polymerase was promiscuous in back-priming activity, the PIV-3 polymerase generated barely detectable levels of back-primed product, irrespective of promoter template sequence. Overall, this study shows that the polymerases from these three nsNSV families are fundamentally similar in their initiation properties, but have differences in their abilities to engage in back-priming.  相似文献   

12.
DNA methylation is a central epigenetic modification in mammals, with essential roles in development and disease. De novo DNA methyltransferases establish DNA methylation patterns in specific regions within the genome by mechanisms that remain poorly understood. Here we show that protein citrullination by peptidylarginine deiminase 4 (PADI4) affects the function of the DNA methyltransferase DNMT3A. We found that DNMT3A and PADI4 interact, from overexpressed as well as untransfected cells, and associate with each other''s enzymatic activity. Both in vitro and in vivo, PADI4 was shown to citrullinate DNMT3A. We identified a sequence upstream of the PWWP domain of DNMT3A as its primary region citrullinated by PADI4. Increasing the PADI4 level caused the DNMT3A protein level to increase as well, provided that the PADI4 was catalytically active, and RNAi targeting PADI4 caused reduced DNMT3A levels. Accordingly, pulse-chase experiments revealed stabilization of the DNMT3A protein by catalytically active PADI4. Citrullination and increased expression of native DNMT3A by PADI4 were confirmed in PADI4-knockout MEFs. Finally, we showed that PADI4 overexpression increases DNA methyltransferase activity in a catalytic-dependent manner and use bisulfite pyrosequencing to demonstrate that PADI4 knockdown causes significant reduction of CpG methylation at the p21 promoter, a known target of DNMT3A and PADI4. Protein citrullination by PADI4 thus emerges as a novel mechanism for controlling a de novo DNA methyltransferase. Our results shed new light on how post-translational modifications might contribute to shaping the genomic CpG methylation landscape.  相似文献   

13.
A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora × G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (−90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (−148 to −85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the −149 to −124 and −107 to −83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.  相似文献   

14.
Full-length de novo sequencing from tandem mass (MS/MS) spectra of unknown proteins such as antibodies or proteins from organisms with unsequenced genomes remains a challenging open problem. Conventional algorithms designed to individually sequence each MS/MS spectrum are limited by incomplete peptide fragmentation or low signal to noise ratios and tend to result in short de novo sequences at low sequencing accuracy. Our shotgun protein sequencing (SPS) approach was developed to ameliorate these limitations by first finding groups of unidentified spectra from the same peptides (contigs) and then deriving a consensus de novo sequence for each assembled set of spectra (contig sequences). But whereas SPS enables much more accurate reconstruction of de novo sequences longer than can be recovered from individual MS/MS spectra, it still requires error-tolerant matching to homologous proteins to group smaller contig sequences into full-length protein sequences, thus limiting its effectiveness on sequences from poorly annotated proteins. Using low and high resolution CID and high resolution HCD MS/MS spectra, we address this limitation with a Meta-SPS algorithm designed to overlap and further assemble SPS contigs into Meta-SPS de novo contig sequences extending as long as 100 amino acids at over 97% accuracy without requiring any knowledge of homologous protein sequences. We demonstrate Meta-SPS using distinct MS/MS data sets obtained with separate enzymatic digestions and discuss how the remaining de novo sequencing limitations relate to MS/MS acquisition settings.Database search tools, such as Sequest (3), Mascot (4), and InsPecT (5), are the most frequently used methods for reliable protein identification in tandem mass (MS/MS) spectrometry based proteomics. These operate by separately matching each MS/MS spectrum to peptide sequences from reference protein databases where all proteins of interest are presumably contained. But this assumption often does not hold true as many important proteins, such as monoclonal antibodies, are not contained in any database because mechanisms of antibody variation (including genetic recombination and somatic hyper-mutation (6)) constantly create new proteins with novel unique sequences. These mechanisms of variation are the foundation of adaptive immune systems and have enabled highly successful antibody-based therapeutic strategies (7, 8). Nevertheless, such variation also means that antibody MS/MS spectra are typically impossible to identify via standard database search techniques whenever the corresponding sequences are not known in advance. An inherent drawback of database search strategies is that they are only as good as the database(s) being searched and incomplete databases often result in proteins being misidentified or left unidentified (9).Despite the importance of novel protein identification, few high-throughput methods have been developed for de novo sequencing of unknown proteins. Low-throughput Edman degradation is a well-known de novo sequencing approach that can accurately call amino acid sequences in N/C-terminal regions of unknown proteins but has drawbacks that make it unsuitable for sequencing proteins longer than 50 amino acids or proteins with post-translational modifications (10, 11). Many have recognized the potential of tandem mass spectrometry for protein sequencing. For example, in 1987 Johnson and Biemann (12) manually sequenced a complete protein from rabbit bone marrow. Meanwhile, automated de novo sequencing methods that rely on interpretations of individual MS/MS spectra are limited in that they typically cannot reconstruct long (8+ AA) sequences without mis-predicting 1 in 5 AA on average for low accuracy collision-induced dissociation (CID) spectra (13, 14). Recent advances in de novo peptide sequencing have improved sequencing accuracy to over 95% for high resolution higher energy collisional dissociation (HCD)1 spectra (15), but at limited sequence coverage (Chi H et al. report only 55% sequence coverage of peptides identified by database search). In fact, all current per-spectrum de novo sequencing strategies face a significant tradeoff between sequencing accuracy and coverage as spectra exhibiting complete peptide fragmentation rarely cover entire target proteins, yet are required to accurately reconstruct full-length peptide sequences. An alternative approach to separately sequencing individual spectra is to simultaneously interpret multiple MS/MS spectra from overlapping peptides. This Shotgun Protein Sequencing (SPS) paradigm differs from traditional algorithms by deriving consensus sequences from contigs - sets of multiple MS/MS spectra from distinct peptides with overlapping sequences (1, 16). Because SPS aggregates multiple spectra from overlapping peptides, protein sequences extending beyond the length of enzymatically digested peptides can be extracted from spectra with incomplete peptide fragmentation. Furthermore, SPS has been found to generate sequences that frequently cover 90–95+% of the target protein sequence(s) whereas mis-predicting only 1 out of every 20 amino acids on high resolution MS/MS spectra (2). But a remaining limitation of SPS is that it still generates fragmented sequences that do not singularly cover large regions of the target protein sequences, much less complete proteins: SPS sequences have an average length of 10–15 amino acids (depending on input data) and the longest recovered SPS de novo sequence is less than 45 amino acids long (1).The considerable limitations of de novo sequencing strategies have typically been addressed by attempting to circumvent them using error-tolerant matching to known protein sequences. One such strategy (17) is to generate short de novo sequence tags and then match them exactly to protein databases without requiring matching the N/C-term flanking masses (to allow for unexpected polymorphisms or post-translational modifications). Short sequence tags are usually derived from parts of the spectrum with high signal-to-noise ratios and typically have higher sequencing accuracy than full-length de novo sequences (18). This approach was later extended in MS-Shotgun (19) and continues to be a popular technique for speeding up database search tools (5, 2022). Homology matching of full length de novo sequences was first explored in CIDentify (23) and later in MS-BLAST (24) by searching de novo sequences using FASTA and WU-BLAST2 (respectively) to find homologous matches to sequences of related proteins; FASTS (25) also approached the problem using a modified version of FASTA. However, common de novo sequencing errors tend to produce sequences that are heavily penalized in pure sequence homology searches. For example, missing peaks in MS/MS spectra may easily cause GA subsequences to be reconstructed as Q or AG (same-mass sequences), thus making subsequent BLAST searches unlikely to succeed. This issue was partially considered in CIDentify and more thoroughly addressed in SPIDER (26) by explicitly modeling de novo sequencing errors together with BLOSUM scores in MS/MS-based sequence homology searches. In addition, OpenSea (27) further explored database matching of de novo sequences for analysis of unexpected post-translational modifications (PTMs). Finally, Shen et al. (28) used short unique de novo sequence tags, called UStags, to discover protein-localized PTMs.Recent approaches to homology matching of de novo sequences have built on genome assembly and sequencing techniques to achieve database-assisted full-length sequencing of unknown proteins. Comparative Shotgun Protein Sequencing (cSPS) complemented SPS assembly techniques with usage of error tolerant matching of de novo sequences to find overlapping SPS de novo sequences that are then further assembled into full-length protein sequences (2). cSPS was designed to support the sequencing of highly divergent proteins that have regions close enough in homology to transfer matches from a reference. cSPS was shown to enable de novo sequencing of monoclonal antibodies at 95+% sequencing accuracy, while simultaneously tolerating and identifying unexpected PTMs (29). In difference from cSPS, Champs (30) de novo sequences individual spectra to obtain putative peptide sequences, which are then mapped to homologous proteins to correct sequencing errors and reconstruct protein sequences with 100% accuracy and 99% coverage. However, Champs is designed to only map peptides that differ from the reference sequence by one or two amino acids and does not handle PTMs. As such, its sequencing accuracy is not directly comparable to that of cSPS as Champs was not designed to sequence highly divergent proteins (such as monoclonal antibodies) with multiple PTMs, insertions, deletions, and/or recombinations. GenoMS (31) extended the approaches in cSPS/Champs by explicitly modeling protein splice variants as paths in splice graphs where nodes represent translated exon regions (32). MS/MS spectra are first searched for exact sequence matches against all possible protein isoforms. The remaining unidentified MS/MS spectra are then aligned to the matched peptides and de novo sequenced to extend the matched sequences into novel regions. Reported sequences are 97–99% accurate and cover 96–99% of target proteins depending on sequence similarity between the novel and reference sequences (31). However, GenoMS de novo sequences are usually extended less than 3 amino acids beyond matched peptides because sequencing accuracy degrades as sequences are extended, thus preventing the consistent extension of long (10+ AA) sequences. Altogether, the use of homology matching approaches for full-length de novo protein sequencing continues to be limited by 1) requiring the previous knowledge of closely related protein sequences and 2) the inherent difficulties in statistically significant homology-tolerant matching of error-prone short de novo sequences.The Meta-SPS approach proposed here seeks to de novo sequence complete proteins, or long protein regions, without any use of a database. Meta-SPS builds upon SPS by treating SPS de novo sequences (contig sequences) as input spectra and further assembling them into longer de novo sequences (meta-contig sequences). We show that Meta-SPS extends de novo sequences to lengths over 100 AA while boosting sequencing accuracy to only 1 mistake per 40 amino acid predictions, thus enabling database-free de novo sequencing of completely novel proteins while also allowing error-tolerant matching approaches to support higher-divergence homologies (by searching longer, more accurate de novo sequences). Meta-SPS algorithms are demonstrated on CID and HCD MS/MS spectra and its limitations are discussed in relation to the underlying limitations of bottom-up tandem mass spectrometry.  相似文献   

15.
Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.  相似文献   

16.
17.
Over the past decade, evidence has accumulated that new protein‐coding genes can emerge de novo from previously non‐coding DNA. Most studies have focused on large scale computational predictions of de novo protein‐coding genes across a wide range of organisms. In contrast, experimental data concerning the folding and function of de novo proteins are scarce. This might be due to difficulties in handling de novo proteins in vitro, as most are short and predicted to be disordered. Here, we propose a guideline for the effective expression of eukaryotic de novo proteins in Escherichia coli. We used 11 sequences from Drosophila melanogaster and 10 from Homo sapiens, that are predicted de novo proteins from former studies, for heterologous expression. The candidate de novo proteins have varying secondary structure and disorder content. Using multiple combinations of purification tags, E. coli expression strains, and chaperone systems, we were able to increase the number of solubly expressed putative de novo proteins from 30% to 62%. Our findings indicate that the best combination for expressing putative de novo proteins in E. coli is a GST‐tag with T7 Express cells and co‐expressed chaperones. We found that, overall, proteins with higher predicted disorder were easier to express.StatementToday, we know that proteins do not only evolve by duplication and divergence of existing proteins but also arise from previously non‐coding DNA. These proteins are called de novo proteins. Their properties are still poorly understood and their experimental analysis faces major obstacles. Here, we aim to present a starting point for soluble expression of de novo proteins with the help of chaperones and thereby enable further characterization.  相似文献   

18.
19.
During sexual reproduction, Euplotes crassus precisely fragments its micronuclear chromosomes and synthesizes new telomeres onto the resulting DNA ends to generate functional macronuclear minichromosomes. In the micronuclear chromosomes, the macronuclear-destined sequences are typically separated from each other by spacer DNA segments, which are eliminated following chromosome fragmentation. Recently, in vivo chromosome fragmentation intermediates that had not yet undergone telomere addition have been characterized. The ends of both the macronuclear-destined and eliminated spacers were found to consist of six-base, 3′ overhangs. As this terminal structure on the macronuclear-destined sequences serves as the substrate for de novo telomere addition, we sought to determine if the spacer DNAs might also undergo telomere addition prior to their elimination. Using a polymerase chain reaction approach, we found that at least some spacer DNAs undergo de novo telomere addition. In contrast to macronuclear-destined sequences, heterogeneity could be observed in the position of telomeric repeat addition. The observation of spacer DNAs with telomeric repeats makes it unlikely that differential telomere addition is responsible for differentiating between retained and eliminated DNA. The heterogeneity in telomere addition sites for spacer DNA also resembles the situation found for telomeric repeat addition to macronuclear-destined sequences in other ciliate species.  相似文献   

20.
The formation of new genes is a primary driving force of evolution in all organisms. The de novo evolution of new genes from non-protein-coding genomic regions is emerging as an important additional mechanism for novel gene creation. Y chromosomes underlie sex determination in mammals and contain genes that are required for male-specific functions. In this study, a search was undertaken for Y chromosome de novo genes derived from non-protein-coding sequences. The Y chromosome orphan gene variable charge, Y-linked (VCY)2, is an autosome-derived gene that has sequence similarity to large autosomal fragments but lacks an autosomal protein-coding homolog. VCY2 locates in the amplicon containing long DNA fragments that were transposed from autosomes to the Y chromosome before the ape-monkey split. We confirmed that VCY2cannot be encoded by autosomes due to the presence of multiple disablers that disrupt the open reading frame, such as the absence of start or stop codons and the presence of premature stop codons. Similar observations have been made for homologs in the autosomes of the chimpanzee, gorilla, rhesus macaque, baboon and out-group marmoset, which suggests that there was a non-protein-coding ancestral VCY2 that was common to apes and monkeys that predated the transposition event. Furthermore, while protein-coding orthologs are absent, a putative non-protein-coding VCY2 with conserved disablers was identified in the rhesus macaque Y chromosome male-specific region. This finding implies that VCY2 might have not acquired its protein-coding ability before the ape-monkey split. VCY2 encodes a testis-specific expressed protein and is involved in the pathologic process of male infertility, and the acquisition of this gene might improve male fertility. This is the first evidence that de novo genes can be generated from transposed autosomal non-protein-coding segments, and this evidence provides novel insights into the evolutionary history of the Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号