首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrated previously that acetylated tubulin inhibits plasma membrane Ca2 +-ATPase (PMCA) activity in plasma membrane vesicles (PMVs) of rat brain through a reversible interaction. Dissociation of the PMCA/tubulin complex leads to restoration of ATPase activity. We now report that, when the enzyme is reconstituted in phosphatidylcholine vesicles containing acidic or neutral lipids, tubulin not only loses its inhibitory effect but is also capable of activating PMCA. This alteration of the PMCA-inhibitory effect of tubulin was dependent on concentrations of both lipids and tubulin. Tubulin (300 μg/ml) in combination with acidic lipids at concentrations > 10%, increased PMCA activity up to 27-fold. The neutral lipid diacylglycerol (DAG), in combination with 50 μg/ml tubulin, increased PMCA activity > 12-fold, whereas tubulin alone at high concentration (≥ 300 μg/ml) produced only 80% increase. When DAG was generated in situ by phospholipase C incubation of PMVs pre-treated with exogenous tubulin, the inhibitory effect of tubulin on PMCA activity (ATP hydrolysis, and Ca2 + transport within vesicles) was reversed. These findings indicate that PMCA is activated independently of surrounding lipid composition at low tubulin concentrations (< 50 μg/ml), whereas PMCA is activated mainly by reconstitution in acidic lipids at high tubulin concentrations. Regulation of PMCA activity by tubulin is thus dependent on both membrane lipid composition and tubulin concentration.  相似文献   

2.
Salinity stress is known to modify the plasma membrane lipid and protein composition of plant cells. In this work, we determined the effects of salt stress on the lipid composition of broccoli root plasma membrane vesicles and investigated how these changes could affect water transport via aquaporins. Brassica oleracea L. var. Italica plants treated with different levels of NaCl (0, 40 or 80 mM) showed significant differences in sterol and fatty acid levels. Salinity increased linoleic (18:2) and linolenic (18:3) acids and stigmasterol, but decreased palmitoleic (16:1) and oleic (18:1) acids and sitosterol. Also, the unsaturation index increased with salinity. Salinity increased the expression of aquaporins of the PIP1 and PIP2 subfamilies and the activity of the plasma membrane H+-ATPase. However, there was no effect of NaCl on water permeability (Pf) values of root plasma membrane vesicles, as determined by stopped-flow light scattering. The counteracting changes in lipid composition and aquaporin expression observed in NaCl-treated plants could allow to maintain the membrane permeability to water and a higher H+-ATPase activity, thereby helping to reduce partially the Na+ concentration in the cytoplasm of the cell while maintaining water uptake via cell-to-cell pathways. We propose that the modification of lipid composition could affect membrane stability and the abundance or activity of plasma membrane proteins such as aquaporins or H+-ATPase. This would provide a mechanism for controlling water permeability and for acclimation to salinity stress.  相似文献   

3.
An increasing amount of evidence suggests that in several amyloid diseases, the fibril formation in vivo and the mechanism of toxicity both involve membrane interactions. We have studied Alzheimer's disease related amyloid beta peptide (Aβ). Recombinant Aβ(M1-40) and Aβ(M1-42) produced in Escherichia coli, allows us to carry out large scale kinetics assays with good statistics. The amyloid formation process is followed in means of thioflavin T fluorescence at relatively low (down to 380 nM) peptide concentration approaching the physiological range. The lipid membranes are introduced in the system as large and small unilamellar vesicles. The aggregation lagtime increases in the presence of lipid vesicles for all situations investigated and the phase behavior of the membrane in the vesicles has a large effect on the aggregation kinetics. By comparing vesicles with different membrane phase behavior we see that the solid gel phase dipalmitoylphosphatidylcholine bilayers cause the largest retardation of Aβ fibril formation. The membrane-induced retardation reaches saturation and is present when the vesicles are added during the lag time up to the nucleation point. No significant difference is detected in lag time when increasing amount of negative charge is incorporated into the membrane.  相似文献   

4.
Ezrin, radixin and moesin (ERM) proteins are more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Recent reviews extensively discuss their biological functions 1, 2, 3 and 4. In this review, we will first remind the main features of this family of proteins, which are known as linkers and regulators of plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.  相似文献   

5.
The major capsid protein of M13 bacteriophage is incorporated at each stage of infection into the host plasma membrane with its amino terminus exposed on the outer surface. Purified M13 coat protein is incorporated with the same asymmetry into synthetic phosphatidylcholine vesicles formed near the Tm of the lipid by a cholate dilution technique. We now report that the lipid in the pre-dilution mixture exists as mixed micelles of uniform size. Prior to dilution, the coat protein is present in at least two states of aggregation, both of which behave similarly in the model membrane assembly reaction. No detectable lipid-protein interaction occurs prior to dilution. Upon dilution there is rapid production of small closed vesicles and coat protein is converted to a chymotrypsin-resistant form, presumably reflecting its incorporation into these vesicle bilayers. Formation of large (>6000 A? diameter) vesicles occurs slowly with preservation of coat protein asymmetry and internal volume. A model for this assembly reaction is proposed.  相似文献   

6.
Secretion is a fundamental cellular process in living organisms, from yeast to cells in humans. Since the 1950s, it was believed that secretory vesicles completely merged with the cell plasma membrane during secretion. While this may occur, the observation of partially empty vesicles in cells following secretion suggests the presence of an additional mechanism that allows partial discharge of intra‐vesicular contents during secretion. This proposed mechanism requires the involvement of a plasma membrane structure called ‘porosome’, which serves to prevent the collapse of secretory vesicles, and to transiently fuse with the plasma membrane (Kiss‐and‐run), expel a portion of its contents and disengage. Porosomes are cup‐shaped supramolecular lipoprotein structures at the cell plasma membrane ranging in size from 15 nm in neurons and astrocytes to 100–180 nm in endocrine and exocrine cells. Neuronal porosomes are composed of nearly 40 proteins. In comparison, the 120 nm nuclear pore complex is composed of >500 protein molecules. Elucidation of the porosome structure, its chemical composition and functional reconstitution into artificial lipid membrane, and the molecular assembly of membrane‐associated t‐SNARE and v‐SNARE proteins in a ring or rosette complex resulting in the establishment of membrane continuity to form a fusion pore at the porosome base, has been demonstrated. Additionally, the molecular mechanism of secretory vesicle swelling, and its requirement for intra‐vesicular content release during cell secretion has also been elucidated. Collectively, these observations provide a molecular understanding of cell secretion, resulting in a paradigm shift in our understanding of the secretory process.  相似文献   

7.
A response when wheat is grown in excess copper is an altered lipid composition of the root plasma membrane (PM). With detailed characterisation of the root PM lipid composition of the copper-treated plants as a basis, in the present study, model systems were used to gain a wider understanding about membrane behaviour, and the impact of a changed lipid composition.PMs from root cells of plants grown in excess copper (50 μM Cu2+) and control (0.3 μM Cu2+) were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracts from the isolated PMs, and also reference vesicles of phosphatidylcholine (PC). In a series of tests, the vesicle permeability for glucose and for protons was analysed. The vesicles show that copper stress reduced the permeability for glucose of the lipid bilayer barrier. When vesicles from stressed plants were modified by addition of lipids to resemble vesicles from control plants, the permeability for glucose was very similar to that of vesicles from control plants. The permeability for protons did not change upon stress.Electron paramagnetic resonance (EPR) of the lipid vesicles spin probed with n-doxylstearic acid (nDSA) was used to explore the lipid rotational freedom at different depth of the bilayer. The EPR measurements supported the permeability data, indicating that the copper stress resulted in more tightly packed bilayers of the PMs with reduced acyl chain motion.  相似文献   

8.
An expanded polyglutamine (Q) tract (>37Q) in huntingtin (htt) causes Huntington disease. Htt associates with membranes and polyglutamine expansion in htt may alter membrane function in Huntington disease through a mechanism that is not known. Here we used differential scanning calorimetry to examine the effects of polyQ expansion in htt on its insertion into lipid bilayers. We prepared synthetic lipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine and tested interactions of htt amino acids 1-89 with 20Q, 32Q or 53Q with the vesicles. GST-htt1-89 with 53Q inserted into synthetic lipid vesicles significantly more than GST-htt1-89 with 20Q or 32Q. We speculate that by inserting more into cell membranes, mutant huntingtin could increase disorder within the lipid bilayer and thereby disturb cellular membrane function.  相似文献   

9.
Plasma membranes from Saccharomyces cerevisiae were prepared by a new procedure involving lyticase treatment of the yeast cells. The plasma membranes were right-side-out, closed vesicles of uniform appearance with a sterol to phospholipid molar ratio of 0.365. The thermotropic behavior of these plasma membranes from wild-type yeast and from sterol mutants was examined by differential scanning calorimetry, fluorescence anisotropy and Arrhenius kinetics of plasma membrane enzymes. While differential scanning calorimetry failed to demonstrate any lipid transition, fluorescence anisotropy data indicated that lipid transitions were occurring in the plasma membranes of the yeast sterol mutants but not the sterol wild-type. The temperature dependence of the plasma membrane enzymes, chitin synthase and Mg2+-ATPase, was also investigated. The Arrhenius kinetics of chitin synthase did not reveal any transitions in either the sterol mutant or wild-type plasma membranes, yet the Arrhenius kinetics of the Mg2+-ATPase suggested that lipid transitions were occurring in both cases.  相似文献   

10.
《Biophysical journal》2019,116(9):1701-1718
KirBac1.1 is a prokaryotic inward-rectifier K+ channel from Burkholderia pseudomallei. It shares the common inward-rectifier K+ channel fold with eukaryotic channels, including conserved lipid-binding pockets. Here, we show that KirBac1.1 changes the phase properties and dynamics of the surrounding bilayer. KirBac1.1 was reconstituted into vesicles composed of 13C-enriched biological lipids. Two-dimensional liquid-state and solid-state NMR experiments were used to assign lipid 1H and 13C chemical shifts as a function of lipid identity and conformational degrees of freedom. A solid-state NMR temperature series reveals that KirBac1.1 lowers the primary thermotropic phase transition of Escherichia coli lipid membranes while introducing both fluidity and internal lipid order into the fluid phases. In B. thailandensis liposomes, the bacteriohopanetetrol hopanoid, and potentially ornithine lipids, introduce a similar primary lipid-phase transition and liquid-ordered properties. Adding KirBac1.1 to B. thailandensis lipids increases B. thailandensis lipid fluidity while preserving internal lipid order. This synergistic effect of KirBac1.1 in bacteriohopanetetrol-rich membranes has implications for bilayer dynamic structure. If membrane proteins can anneal lipid translational degrees of freedom while preserving internal order, it could offer an explanation to the nature of liquid-ordered protein-lipid organization in vivo.  相似文献   

11.
We investigate the effects of two structurally similar small cyclic molecules: salicylic acid and perillic acid on a zwitterionic model lipid bilayer, and show that both molecules might have biological activity related to membrane thinning. Salicylic acid is a nonsteroidal antiinflammatory drug, some of the pharmacological properties of which arise from its interaction with the lipid bilayer component of the plasma membrane. Prior simulations show that salicylate orders zwitterionic lipid membranes. However, this is in conflict with Raman scattering and vesicle fluctuation analysis data, which suggest the opposite. We show using extensive molecular dynamics simulations, cumulatively >2.5 μs, that salicylic acid indeed disorders membranes with concomitant membrane thinning and that the conflict arose because prior simulations suffered from artifacts related to the sodium-ion induced condensation of zwitterionic lipids modeled by the Berger force field. Perillic acid is a terpenoid plant extract that has antiinfective and anticancer properties, and is extensively used in eastern medicine. We found that perillic acid causes large-scale membrane thinning and could therefore exert its antimicrobial properties via a membrane-lytic mechanism reminiscent of antimicrobial peptides. Being more amphipathic, perillic acid is more potent in disrupting lipid headgroup packing, and significantly modifies headgroup dipole orientation. Like salicylate, the membrane thinning effect of perillic acid is masked by the presence of sodium ions. As an alternative to sodium cations, we advocate the straightforward solution of using larger countercations like potassium or tetra-methyl-ammonium that will maintain electroneutrality but not interact strongly with, and thus not condense, the lipid bilayer.  相似文献   

12.
Some lipid mixtures form membranes containing submicroscopic (nanodomain) ordered lipid domains (rafts). Some of these nanodomains are so small (radius <5 nm) that they cannot be readily detected with Förster resonance energy transfer (FRET)-labeled lipid pairs with large Ro. We define such domains as ultrananodomains. We studied the effect of lipid structure/composition on the formation of ultrananodomains in lipid vesicles using a dual-FRET-pair approach in which only one FRET pair had Ro values that were sufficiently small to detect the ultrananodomains. Using this approach, we measured the temperature dependence of domain and ultrananodomain formation for vesicles composed of various mixtures containing a high-Tm lipid (brain sphingomyelin (SM)) or dipalmitoyl phosphatidylcholine (DPPC)), low-Tm lipid (dioleoylphosphatidylcholine (DOPC) or 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC)), and a lower (28 mol %) or higher (38 mol %) cholesterol concentration. For every lipid combination tested, the thermal stabilities of the ordered domains were similar, in agreement with our prior studies. However, the range of temperatures over which ultrananodomains formed was highly lipid-type dependent. Overall, vesicles that were closest to mammalian plasma membrane in lipid composition (i.e., with brain SM, POPC, and/or higher cholesterol) formed ultrananodomains in preference to larger domains over the widest temperature range. Relative to DPPC, the favorable effect of SM on ultrananodomain formation versus larger domains was especially large. In addition, the favorable effect of a high cholesterol concentration, and of POPC versus DOPC, on the formation of ultrananodomains versus larger domains was greater in vesicles containing SM than in those containing DPPC. We speculate that it is likely that natural mammalian lipids are tuned to maximize the tendency to form ultrananodomains relative to larger domains. The observation that domain size is more sensitive than domain formation to membrane composition has implications for how membrane domain properties may be regulated in vivo.  相似文献   

13.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

14.
The human antimicrobial peptide LL-37 permeabilizes the plasma membrane of host cells, but LL-37-induced direct effects on mitochondrial membrane permeability and function has not been reported. Here, we demonstrate that LL-37 is rapidly (within 20 min) internalized by human osteoblast-like MG63 cells, and that the peptide co-localizes with MitoTracker arguing for accumulation in mitochondria. Subcellular fractionation and Western blot disclose that stimulation with LL-37 (8 μM) for 2 h triggers release of the mitochondrial protein apoptosis-inducing factor (AIF) to the cytosol, whereas LL-37 causes no release of cytochrome C oxidase subunit IV of the inner mitochondrial membrane, suggesting that LL-37 affects mitochondrial membrane permeability in a specific manner. Next, we investigated release of AIF and cytochrome C from isolated mitochondria by measuring immunoreactivity by dot blot. The media of mitochondria treated with LL-37 (8 μM) for 2 h contained 50% more AIF and three times more cytochrome C than that of control mitochondria, showing that LL-37 promotes release of both AIF and cytochrome C. Moreover, in vesicles reflecting mitochondrial membrane lipid composition, LL-37 stimulates membrane permeabilization and release of tracer molecules. We conclude that LL-37 is rapidly internalized by MG63 cells and accumulates in mitochondria, and that the peptide triggers release of pro-apoptotic AIF and directly affects mitochondrial membrane structural properties.  相似文献   

15.
Thecharacteristics of L-lactic acid transport across thetrophoblast basal membrane were investigated and compared with those across the brush-border membrane by using membrane vesicles isolated from human placenta. The uptake ofL-[14C]lactic acid into basal membranevesicles was Na+ independent, and an uphill transport wasobserved in the presence of a pH gradient([H+]out > [H+]in).L-[14C]lactic acid uptake exhibitedsaturation kinetics with a Km value of 5.89 ± 0.68 mM in the presence of a pH gradient.p-Chloromercuribenzenesulfonate and-cyano-4-hydroxycinnamate inhibited the initial uptake, whereas phloretin or 4,4'-diisothiocyanostilbene-2,2'-disulfonate did not.Mono- and dicarboxylic acids suppressed the initial uptake. Inconclusion, L-lactic acid transport in the basal membraneis H+ dependent and Na+ independent, as is alsothe case for the brush-border membrane transport, and itscharacteristics resemble those of monocarboxylic acid transporters.However, there were several differences in the effects of inhibitorsbetween basal and brush-border membrane vesicles, suggesting that thetransporter(s) involved in L-lactic acid transport in thebasal membrane of placental trophoblast may differ from those in thebrush-border membrane.

  相似文献   

16.
Four amino acid dicarboxylic amphiphiles which contain cysteine or homocysteine were synthesized. Each forms synthetic bilayer membranes upon hydration. Extensive sonication above the lipid phase transition temperature, 61 to 82 degrees C, produced 1000 A diameter vesicles. Treatment of the vesicles with water-soluble carbodiimides during and after sonication induced oligopeptide formation at the vesicle surface with retention of vesicle size and shape. Size exclusion chromatography indicates the products are predominantly di- to decapeptides. The permeability characteristics of the amino acid and peptide vesicles to [3H]glucose and 6-carboxyfluorescein are reported. The amino acid vesicles are among the least permeable nonpolymerized bilayer vesicles described in the literature to date. Formation of the peptide vesicles increases the membrane permeability, whereas in other polymerizable lipid vesicles the permeability decreases upon polymerization. The amino acid vesicles can be immobilized on Sephadex beads by reaction with carbodiimide. The impermeability, biodegradability, and ease of immobilization make this class of vesicles attractive materials for the encapsulation of reagents.  相似文献   

17.
《Biophysical journal》2020,118(6):1292-1300
Giant plasma membrane vesicles (GPMVs) are a widely used experimental platform for biochemical and biophysical analysis of isolated mammalian plasma membranes (PMs). A core advantage of these vesicles is that they maintain the native lipid and protein diversity of the PM while affording the experimental flexibility of synthetic giant vesicles. In addition to fundamental investigations of PM structure and composition, GPMVs have been used to evaluate the binding of proteins and small molecules to cell-derived membranes and the permeation of drug-like molecules through them. An important assumption of such experiments is that GPMVs are sealed, i.e., that permeation occurs by diffusion through the hydrophobic core rather than through hydrophilic pores. Here, we demonstrate that this assumption is often incorrect. We find that most GPMVs isolated using standard preparations are passively permeable to various hydrophilic solutes as large as 40 kDa, in contrast to synthetic giant unilamellar vesicles. We attribute this leakiness to stable, relatively large, and heterogeneous pores formed by rupture of vesicles from cells. Finally, we identify preparation conditions that minimize poration and allow evaluation of sealed GPMVs. These unexpected observations of GPMV poration are important for interpreting experiments utilizing GPMVs as PM models, particularly for drug permeation and membrane asymmetry.  相似文献   

18.
Bordetella pertussis, the pathogenic bacteria responsible for whooping cough, secretes several virulence factors, among which is the adenylate cyclase toxin (CyaA) that plays a crucial role in the early stages of human respiratory tract colonization. CyaA invades target cells by translocating its catalytic domain directly across the plasma membrane and overproduces cAMP, leading to cell death. The molecular process leading to the translocation of the catalytic domain remains largely unknown. We have previously shown that the catalytic domain per se, AC384, encompassing residues 1–384 of CyaA, did not interact with lipid bilayer, whereas a longer polypeptide, AC489, spanning residues 1–489, binds to membranes and permeabilizes vesicles. Moreover, deletion of residues 375–485 within CyaA abrogated the translocation of the catalytic domain into target cells. Here, we further identified within this region a peptidic segment that exhibits membrane interaction properties. A synthetic peptide, P454, corresponding to this sequence (residues 454–485 of CyaA) was characterized by various biophysical approaches. We found that P454 (i) binds to membranes containing anionic lipids, (ii) adopts an α-helical structure oriented in plane with respect to the lipid bilayer, and (iii) permeabilizes vesicles. We propose that the region encompassing the helix 454–485 of CyaA may insert into target cell membrane and induce a local destabilization of the lipid bilayer, thus favoring the translocation of the catalytic domain across the plasma membrane.  相似文献   

19.
Exposure of oat seedlings to repeated moderate water deficit stress causes a drought acclimation of the seedlings. This acclimation is associated with changes in the lipid composition of the plasma membrane of root cells. Here, plasma membranes from root cells of acclimated and control plants were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracted from the plasma membranes. In a series of tests the vesicle permeability for glucose and for protons were analysed and compared with the permeability of model vesicles. Further, the importance of critical components for the permeability properties was analysed by modifying the lipid composition of the vesicles from acclimated and from control plants. The purpose was to add specific lipids to vesicles from acclimated plants to mimic the composition of the vesicles from control plants and vice versa. The plasma membrane lipid vesicles from acclimated plants had a significantly increased permeability for glucose and decreased permeability for protons as compared to control vesicles. The results point to the importance of the ratio phosphatidylcholine (PC)/phosphatidylethanolamine (PE), the levels of cerebrosides and free sterols and the possible interaction of these components for the plasma membrane as a permeability barrier.  相似文献   

20.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号