共查询到20条相似文献,搜索用时 15 毫秒
1.
Tracy J. Pritchard Yoshiaki Kawase Kobra Haghighi Ahmad Anjak Wenfeng Cai Min Jiang Persoulla Nicolaou George Pylar Ioannis Karakikes Kleopatra Rapti Jack Rubinstein Roger J. Hajjar Evangelia G. Kranias 《PloS one》2013,8(12)
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term. 相似文献
2.
3.
BackgroundHeart failure is operationally defined as the inability of the heart to maintain blood flow to meet the needs of the body and it is the final common pathway of various cardiac pathologies. Electrophysiological remodeling, intercellular uncoupling and a pro-fibrotic response have been identified as major arrhythmogenic factors in heart failure.ObjectiveIn this study we investigate vulnerability to reentry under heart failure conditions by incorporating established electrophysiological and anatomical remodeling using computer simulations.MethodsThe electrical activity of human transmural ventricular tissue (5 cm×5 cm) was simulated using the human ventricular action potential model Grandi et al. under control and heart failure conditions. The MacCannell et al. model was used to model fibroblast electrical activity, and their electrotonic interactions with myocytes. Selected degrees of diffuse fibrosis and variations in intercellular coupling were considered and the vulnerable window (VW) for reentry was evaluated following cross-field stimulation.ResultsNo reentry was observed in normal conditions or in the presence of HF ionic remodeling. However, defined amount of fibrosis and/or cellular uncoupling were sufficient to elicit reentrant activity. Under conditions where reentry was generated, HF electrophysiological remodeling did not alter the width of the VW. However, intermediate fibrosis and cellular uncoupling significantly widened the VW. In addition, biphasic behavior was observed, as very high fibrotic content or very low tissue conductivity hampered the development of reentry. Detailed phase analysis of reentry dynamics revealed an increase of phase singularities with progressive fibrotic components.ConclusionStructural remodeling is a key factor in the genesis of vulnerability to reentry. A range of intermediate levels of fibrosis and intercellular uncoupling can combine to favor reentrant activity. 相似文献
4.
5.
Jagadish Vangipurapu Alena Stan?áková Teemu Kuulasmaa Johanna Kuusisto Markku Laakso 《PloS one》2015,10(4)
Background
Hyperproinsulinemia is an indicator of β-cell dysfunction, and fasting proinsulin levels are elevated in patients with hyperglycemia. It is not known whether proinsulin levels after a glucose load are better predictors of hyperglycemia and type 2 diabetes than fasting proinsulin.Methods
Participants were 9,396 Finnish men (mean±SD, age 57.3±7.1 years, BMI 27.0±4.0 kg/m2) of the population-based METabolic Syndrome In Men Study who were non-diabetic at the recruitment, and who participated in a 6-year follow-up study. Proinsulin and insulin levels were measured in the fasting state and 30 and 120 min after an oral glucose load. Area under the curve (AUC) and proinsulin to insulin ratios were calculated.Results
Fasting proinsulin, proinsulin at 30 min and proinsulin AUC during the first 30 min of an oral glucose tolerance test significantly predicted both the worsening of hyperglycemia and type 2 diabetes after adjustment for confounding factors. Further adjustment for insulin sensitivity (Matsuda index) or insulin secretion (Disposition index) weakened these associations. Insulin sensitivity had a major impact on these associations.Conclusion
Our results suggest that proinsulin in the fasting state and after an oral glucose load similarly predict the worsening of hyperglycemia and conversion to type 2 diabetes. 相似文献6.
7.
Kathleen S. McDowell Sohail Zahid Fijoy Vadakkumpadan Joshua Blauer Rob S. MacLeod Natalia A. Trayanova 《PloS one》2015,10(2)
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible. 相似文献
8.
Cx43基因在人类及小鼠胎心发育中的时空表达规律 总被引:2,自引:2,他引:2
目的 检测Cx4 3在人类和小鼠的胚胎心脏的表达 ,了解该基因在心脏发育过程中的表达规律。方法 选取人类 6~ 18孕周正常胚胎或胎儿心脏 6 3例 ,小鼠孕龄 9 5~ 16 5d胚胎心脏 6 4例 ,采用免疫组化法显示Cx4 3基因在心脏的表达。结果 早期人类胚胎心脏中 ,Cx4 3在心室肌中没有表达 ,心房肌表达微弱 ,原始小梁网中表达很高 ,随着胚胎发育 ,在心房和心室的表达逐渐增强 ,小梁网的表达在胚胎 13~ 14周达到高峰。室间隔的肌部表达量较弱 ,膜部室间隔不表达。房室瓣和大动脉根部管壁Cx4 3没有明显表达。除了在大动脉管壁表达不同 ,小鼠胚胎心脏表达规律与人类基本相同。结论 Cx4 3对于胚胎心脏的发育至关重要。 相似文献
9.
Wei Feng Xiuqing Cui Bing Liu Chuanyao Liu Yang Xiao Wei Lu Huan Guo Meian He Xiaomin Zhang Jing Yuan Weihong Chen Tangchun Wu 《PloS one》2015,10(4)
Background
Elevated heavy metals and fasting plasma glucose (FPG) levels were both associated with increased risk of cardiovascular diseases. However, studies on the associations of heavy metals and essential elements with altered FPG and diabetes risk were limited or conflicting. The objective of this study was to evaluate the potential associations of heavy metals and essential trace elements with FPG and diabetes risk among general Chinese population.Methods
We conducted a cross-sectional study to investigate the associations of urinary concentrations of 23 metals with FPG, impaired fasting glucose (IFG) and diabetes among 2242 community-based Chinese adults in Wuhan. We used the false discovery rate (FDR) method to correct for multiple hypothesis tests.Results
After adjusting for potential confounders, urinary aluminum, titanium, cobalt, nickel, copper, zinc, selenium, rubidium, strontium, molybdenum, cadmium, antimony, barium, tungsten and lead were associated with altered FPG, IFG or diabetes risk (all P< 0.05); arsenic was only dose-dependently related to diabetes (P< 0.05). After additional adjustment for multiple testing, titanium, copper, zinc, selenium, rubidium, tungsten and lead were still significantly associated with one or more outcomes (all FDR-adjusted P< 0.05).Conclusions
Our results suggest that multiple metals in urine are associated with FPG, IFG or diabetes risk. Because the cross-sectional design precludes inferences about causality, further prospective studies are warranted to validate our findings. 相似文献10.
Conventional methods for sample size calculation for population-based longitudinal studies tend to overestimate the statistical power by overlooking important determinants of the required sample size, such as the measurement errors and unmeasured etiological determinants, etc. In contrast, a simulation-based sample size calculation, if designed properly, allows these determinants to be taken into account and offers flexibility in accommodating complex study design features. The Canadian Longitudinal Study on Aging (CLSA) is a Canada-wide, 20-year follow-up study of 30,000 people between the ages of 45 and 85 years, with in-depth information collected every 3 years. A simulation study, based on an illness-death model, was conducted to: (1) investigate the statistical power profile of the CLSA to detect the effect of environmental and genetic risk factors, and their interaction on age-related chronic diseases; and (2) explore the design alternatives and implementation strategies for increasing the statistical power of population-based longitudinal studies in general. The results showed that the statistical power to identify the effect of environmental and genetic risk exposures, and their interaction on a disease was boosted when: (1) the prevalence of the risk exposures increased; (2) the disease of interest is relatively common in the population; and (3) risk exposures were measured accurately. In addition, the frequency of data collection every three years in the CLSA led to a slightly lower statistical power compared to the design assuming that participants underwent health monitoring continuously. The CLSA had sufficient power to detect a small (1<hazard ratio (HR)≤1.5) or moderate effect (1.5< HR≤2.0) of the environmental risk exposure, as long as the risk exposure and the disease of interest were not rare. It had enough power to detect a moderate or large (2.0<HR≤3.0) effect of the genetic risk exposure when the prevalence of the risk exposure was not very low (≥0.1) and the disease of interest was not rare (such as diabetes and dementia). The CLSA had enough power to detect a large effect of the gene-environment interaction only when both risk exposures had relatively high prevalence (0.2) and the disease of interest was very common (such as diabetes). The minimum detectable hazard ratios (MDHR) of the CLSA for the environmental and genetic risk exposures obtained from this simulation study were larger than those calculated according to the conventional sample size calculation method. For example, the MDHR for the environmental risk exposure was 1.15 according to the conventional method if the prevalence of the risk exposure was 0.1 and the disease of interest was dementia. In contrast, the MDHR was 1.61 if the same exposure was measured every 3 years with a misclassification rate of 0.1 according to this simulation study. With a given sample size, higher statistical power could be achieved by increasing the measuring frequency in participants with high risk of declining health status or changing risk exposures, and by increasing measurement accuracy of diseases and risk exposures. A properly designed simulation-based sample size calculation is superior to conventional methods when rigorous sample size calculation is necessary. 相似文献
11.
12.
The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. 相似文献
13.
14.
15.
16.
We aim to assess the effectiveness of feedback-controlled resonant drift pacing as a method for low energy defibrillation. Antitachycardia pacing is the only low energy defibrillation approach to have gained clinical significance, but it is still suboptimal. Low energy defibrillation would avoid adverse side effects associated with high voltage shocks and allow the application of implantable cardioverter defibrillator (ICD) therapy, in cases where such therapy is not tolerated today. We present results of computer simulations of a bidomain model of cardiac tissue with human atrial ionic kinetics. Reentry was initiated and low energy shocks were applied with the same period as the reentry, using feedback to maintain resonance. We demonstrate that such stimulation can move the core of reentrant patterns, in the direction that depends on the location of the electrodes and the time delay in the feedback. Termination of reentry is achieved with shock strength one-order-of-magnitude weaker than in conventional single-shock defibrillation. We conclude that resonant drift pacing can terminate reentry at a fraction of the shock strength currently used for defibrillation and can potentially work where antitachycardia pacing fails, due to the feedback mechanisms. Success depends on a number of details that these numerical simulations have uncovered. 相似文献
17.
18.
Misa Ohno Yuto Togashi Kyoko Tsuda Kazuaki Okawa Minori Kamaya Masayoshi Sakaguchi Yasusato Sugahara Fumitaka Oyama 《PloS one》2013,8(6)
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. 相似文献
19.
M Dornbierer M Stadelmann J Sourdon B Gahl S Cook TP Carrel HT Tevaearai SL Longnus 《PloS one》2012,7(8):e43642
Aims
Cardiac grafts from non-heartbeating donors (NHBDs) could significantly increase organ availability and reduce waiting-list mortality. Reluctance to exploit hearts from NHBDs arises from obligatory delays in procurement leading to periods of warm ischemia and possible subsequent contractile dysfunction. Means for early prediction of graft suitability prior to transplantation are thus required for development of heart transplantation programs with NHBDs.Methods and Results
Hearts (n = 31) isolated from male Wistar rats were perfused with modified Krebs-Henseleit buffer aerobically for 20 min, followed by global, no-flow ischemia (32°C) for 30, 50, 55 or 60 min. Reperfusion was unloaded for 20 min, and then loaded, in working-mode, for 40 min. Left ventricular (LV) pressure was monitored using a micro-tip pressure catheter introduced via the mitral valve. Several hemodynamic parameters measured during early, unloaded reperfusion correlated significantly with LV work after 60 min reperfusion (p<0.001). Coronary flow and the production of lactate and lactate dehydrogenase (LDH) also correlated significantly with outcomes after 60 min reperfusion (p<0.05). Based on early reperfusion hemodynamic measures, a composite, weighted predictive parameter, incorporating heart rate (HR), developed pressure (DP) and end-diastolic pressure, was generated and evaluated against the HR-DP product after 60 min of reperfusion. Effective discriminating ability for this novel parameter was observed for four HR*DP cut-off values, particularly for ≥20 *103 mmHg*beats*min−1 (p<0.01).Conclusion
Upon reperfusion of a NHBD heart, early evaluation, at the time of organ procurement, of cardiac hemodynamic parameters, as well as easily accessible markers of metabolism and necrosis seem to accurately predict subsequent contractile recovery and could thus potentially be of use in guiding the decision of accepting the ischemic heart for transplantation. 相似文献20.