首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on Echiura and Sipuncula collected by the MAR-ECO expedition on the RV G.O. Sars to the northern Mid-Atlantic Ridge are presented. Eight specimens of echiuran and 13 specimens of sipunculan worms were obtained from eight stations. Two species of Echiura and two species of Sipuncula were identified. One echiuran is a new species of Jacobia.  相似文献   

2.
Echiura is traditionally regarded as a small phylum of unsegmented spiralian worms. Molecular analyses, however, provide unquestionable evidence that Echiura are derived annelids that lost segmentation. Like annelids, echiurans possess chaetae, a single ventral pair in all species and one or two additional caudal hemi-circles of chaetae in two subgroups, but their evolutionary origin and affiliation to annelid chaetae are unresolved. Since annelids possess segmental pairs of dorsal (notopodial) and ventral (neuropodial) chaetae that are arranged in a row, the ventral chaetae in Echiura either represent a single or a paired neuropodial group of chaetae, while the caudal circle may represent fused rows of chaetae. In annelids, chaetogenesis is generally restricted to the ventral part of the notopodial chaetal sac and to the dorsal part of the neuropodial chaetal sac. We used the exact position of the chaetal formation site in the echiuran species, Thalassema thalassemum (Pallas, 1766) and Echiurus echiurus (Pallas, 1767), to test different hypotheses of the evolution of echiurid chaetae. As in annelids, a single chaetoblast is responsible for chaetogenesis in both species. Each chaeta of the ventral pair arises from its own chaetal sac and possesses a lateral formation site, evidencing that the pair of ventral chaetae in Echiura is homologous to a pair of neuropodia that fused on the ventral side, while the notopodia were reduced. Both caudal hemi-circles of chaetae in Echiurus echiurus are composed of several individual chaetal sacs, each with its own formative site. This finding argues against a homology of these hemi-circles of chaetae and annelids’ rows of chaetae and leads to the hypothesis that the caudal chaetal rings evolved once within the Echiura by multiplication of ventral chaetae.  相似文献   

3.
Phylogeny of protostome worms derived from 18S rRNA sequences   总被引:13,自引:3,他引:10  
The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.   相似文献   

4.
Sexual dimorphism in craniodental features is investigated in a sample of 45 carnivore species in relation to allometry, phylogeny, and behavioural ecology. Dimorphism is more pronounced in both upper and lower canine size and strength than in carnassial size, skull dimensions and biomechanical features, but all dimorphism indices covary. As with most morphological characters, differences in canine sexual dimorphism are significantly related to phylogeny, estimated from either taxonomic rankings or a limited matrix of molecular distances; in particular, mustelids, felids and procyonids are more dimorphic than other carnivore families. Thus, because of problems related to species dependence in comparative data, remaining analyses are based on phylogenetically transformed values using a spatial autoregressive method.
In contrast to other mammals, sexual dimorphism in carnivore canines is not correlated with differences in body weight, skull length or basicranial axis length. Nor is it correlated with categorical variables of activity pattern, habitat, or diet. In our Carnivore sample, canine dimorphism is related only to breeding system: uni-male, group-living (harem) species have significantly greater canine dimorphism than multi-male, multi-female groups and monogamous pair-bonding species. By contrast, dimorphism in carnassial size is related to dietary differences, specifically greater dimorphism in meat-eating species, and not breeding patterns. Dimorphism in estimates of jaw muscle size suggest functional demands from both diet and breeding type. It is concluded that, befitting patterns of heterodont dentition, sexual selection influences variation in canine dimorphism while feeding ecology is related to carnassial dimorphism.  相似文献   

5.
Producing a robust phylogenetic reconstruction for Polychaeta using either morphological or molecular data sets has proven very difficult. There remain many conflicts between morphological analyses and hypotheses based on DNA data, the latter principally derived from 18S rRNA sequences. For the present study a data set covering a broad range of polychaete diversity was assembled, including 38 new sequences from 21 species. Besides available 18S rRNA data, five additional gene segments were examined: the D1 and D9-10 expansion regions of 28S rRNA, histone H3, snU2 RNA and cytochrome c oxidase subunit I. Maximum parsimony, maximum likelihood and Bayesian analyses were conducted.Annelida and Mollusca were reciprocally monophyletic in maximum likelihood analyses, but Polychaeta included a cephalopod in maximum parsimony analyses, and a patellogastropod in Bayesian analyses. When rooted on the Mollusca, optimal topologies from maximum likelihood analyses showed a recognisable basal group of taxa, including Oweniidae, Chaetopteridae and Amphinomidae. The six studied phyllodocidan families plus Orbiniidae (as the sister group of the scale-worms) formed the next most basal group. All analyses support the inclusion of Echiura, Clitellata and Siboglinidae within polychaetes. Bayesian analyses show Echiura as the sister group of Capitellidae, in agreement with previous 18S rRNA results, In contrast, Echiura formed the sister group to Trichobranchidae in maximum likelihood and maximum parsimony analyses.Supra-familial groupings consistently recovered within Polychaeta in the analyses are: (i) Terebellida without Ampharetidae; (ii) Scolecida (excepting Orbiniidae); (iii) Eunicidae, Lumbrineridae and Clitellata; and (iv) “Cirratuliformia” (including Sternaspidae) plus Sabellidae, Serpulidae and Spionidae.  相似文献   

6.
Recent molecular analyses consistently resolve the “spoon worms” (Echiura) as a subgroup of the Annelida, but their closest relatives among annelids still remain unclear. Since the adult morphology of echiurans yields limited insight into their ancestry, we focused on characters of their larval anatomy to contribute to this discussion. Electron microscopical studies of the larval protonephridia (so-called head kidneys) of the echiuran species Thalassema thalassemum revealed distinct correspondences to character states in serpulid polychaetes, although a close relationship between Echiura and Serpulidae is not supported by any phylogenetic analysis. The larval head kidneys of T. thalassemum consist of only two cells, a terminal cell and a duct cell. The terminal cell forms a tuft of six cilia projecting into the lumen of the terminal cell. The cilia are devoid of circumciliary microvilli. A filter structure is formed by two to three layers of elongate microvilli that surround the lumen of the terminal cell in a tubular manner. A thin layer of extracellular matrix (ECM) encloses the outer microvilli of the tubular structure. The tips of the microvilli project into the lumen of the adjacent duct cell but are not directly connected to it. However, mechanic coupling is facilitated by the surrounding ECM and abundant hemidesmosomes. The distal end of the multiciliary duct cell forms the external opening of the nephridium; a specialized nephropore cell is absent. Apart from the multiciliarity of the duct cell, details of the head kidneys in T. thalassemum reveal no support for the current assumption that Echiura is closely related to Capitellida and/or Terebelliformia. Available data for other echiuran species, however, suggest that the head kidneys of T. thalassemum show a derived state within Echiura.  相似文献   

7.
Hosoya T  Araya K 《Zoological science》2005,22(12):1305-1318
As a first step in reconstructing the phylogeny of world stag beetles (Coleoptera: Lucanidae), phylogenetic relationships among the major members of Japanese stag beetles were explored by analyzing a sequence of 1030 nucleotides from the mitochondrial 16S ribosomal RNA (16S rRNA) gene. A total of 20 species and three additional subspecies representing 13 genera were examined to provide basic information on the phylogeny of world Lucanidae. The resultant phylogenetic tree indicates that the family Lucanidae is monophyletic, and contains two major lineages: one consists of the genera Platycerus, Aesalus, Ceruchus, and Nicagus, and the other includes Dorcus, Rhaetulus, Prosopocoilus, Aegus, Neolucanus, Prismognathus, Lucanus, Figulus, and Nigidius. Generic members of the latter lineage are further divided into the following four sublineages: i) Figulus and Nigidius; ii) Prismognathus and Lucanus; iii) Aegus and Neolucanus; and iv) Dorcus, Rhaetulus, and Prosopocoilus. These molecular phylogenetic relationships are used as a basis for a preliminary exploration of the evolution of sexual dimorphism in the shape of the mandible. The results of this investigation suggest that strong sexual dimorphism with well-developed mandibles in males evolved independently at least twice, once in the genus Aegus and once in the ancestor of the Lucanus-Prismognathus and Dorcus-Rhaetulus-Prosopocoilus clades. Alternatively, it is possible that sexual dimorphism of mandibles has undergone secondary loss in the genera Figulus and Nigidius.  相似文献   

8.

Background  

Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution.  相似文献   

9.
Sexual selection contributes strongly to the evolution of sexual dimorphism among animal taxa. However, recent comparative analyses have shown that evolution of sexual dimorphism can be influenced by extrinsic factors like mating system and environment, and also that different types of sexual dimorphism may present distinct evolutionary pathways. Investigating the co-variation among different types of sexual dimorphism and their association with environmental factors can therefore provide important information about the mechanisms generating variation in sexual dimorphism among contemporary species. Using phylogenetic comparative analyses comparing 49 species of Tanganyikan cichlid fishes, we first investigated the pairwise relationship between three types of sexual dimorphism [size dimorphism (SSD), colour dimorphism (COD) and shape dimorphism (SHD)] and how they were related to the strength of pre- and post-copulatory sexual selection. We then investigated the influence of ecological features on sexual dimorphism. Our results showed that although SSD was associated with the overall strength of sexual selection it was not related to other types of sexual dimorphism. Also, SSD co-varied with female size and spawning habitat, suggesting a role for female adaptations to spawn in small crevices and shells influencing SSD in this group. Further, COD and SHD were positively associated and both show positive relationships with the strength of sexual selection. Finally, the level of COD and SHD was related to habitat complexity. Our results thus highlight distinct evolutionary pathways for different types of sexual dimorphism and further that ecological factors have influenced the evolution of sexual dimorphism in Tanganyikan cichlid fishes.  相似文献   

10.
Monkey beetles (Hopliini) are a large clade of flower and leaf feeding species within the Scarabaeidae (chafers) with greatest diversity in southern Africa. Their internal relationships and sister group affinities have not been studied with DNA methods. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 158 species, representing most recognized subfamilies of Scarabaeidae, including 46 species of Hopliini. Combined analyses using maximum likelihood and Bayesian inference under the two preferred alignment parameters recovered the Hopliini as monophyletic. Hopliines were inserted at the base of a clade of Cetoniinae+Rutelinae+Dynastinae, being either recovered as their immediate sister group, or as part of an expanded set of basal branches that also includes the tribe Macrodactylini which has been classified as part of the Melolonthinae (may chafers). At the level of subtribes, we found Hopliina paraphyletic with respect to Pachycnemina which also includes the monophyletic clade of Heterochelina and Gymnolomina. Trait mapping under parsimony on the preferred tree resulted in inferences of three independent origins of sexual dimorphism, which coincided with shifts to 'flower-embedding' pollination. In contrast, night active taxa, which are general phyllophages as other pleurostict chafers, never show clear sexual dimorphism. South African lineages include several deep-branching lineages. The exceptional morphological and phylogenetic diversity of the South African fauna may therefore be due to their antiquity, in addition to sexual selection in the day-active lineages. Phylogenetic studies of the endemic South African plant radiations have demonstrated the repeated evolutionary shift to beetle pollination, but it remains to be investigated if this is driven by the hopliine pollinators present in the bioregion or by a propensity of the local plant lineages favoring this pollination syndrome.  相似文献   

11.
Abstract. Sipunculans are a phylum of non-segmented, marine worms. Although they are well characterized morphologically, relationships within the phylum and the relationship of Sipuncula to other spiralian phyla have been strongly debated. I analyzed representatives of 13 of 17 described genera using a 654-bp fragment of the mitochondrial gene, cytochrome c oxidase subunit I, to construct the first intraphylum phylogenetic hypothesis for sipunculans based on molecular sequence data. Within the phylum, tree topologies are loosely congruent with a previously published morphological analysis, except that the monotypic genus Phascolopsis occurred within the Golfingiaformes as a sister group to, or nested within, the Themistidae. Phylogenetic analyses, including 30 sequences from additional invertebrate taxa, suggest that sipunculans are most closely related to the Annelida (including Echiura). A previously proposed sipunculan-molluscan relationship is not supported. While not universally accepted, this hypothesis is consistent with other recent and past data on phylum-level relationships.  相似文献   

12.
The phylogenetic position of Sipuncula, a group of unsegmented marine worms, has been controversial for several decades: Especially based on morphological data, closer relationships to Mollusca or Annelida were among the most favoured hypotheses. Increasing amounts of molecular data in recent years have consistently placed Sipuncula either in close affinity to or even within Annelida, the segmented worms, and rejected a close relationship to Mollusca. Yet, it remained uncertain whether Sipuncula is the sister group of Annelida or an annelid subtaxon. Therefore, herein we gathered data for five nuclear genes, which have been rarely used regarding Annelida and Sipuncula, and combined these with data for six previously used genes to further elucidate the phylogenetic position of Sipuncula. We also compiled a data set for 78 ribosomal proteins from publicly available genomic data sets. These are the two largest data sets for annelids with more than 10 taxa to date. All analyses placed Sipuncula within Annelida. For the first time, topology tests significantly rejected the possibility that Sipuncula is sister to Annelida. Thus, our analyses revealed that Sipuncula had secondarily lost segmentation. Given that unsegmented Echiura is also an annelid subtaxon, segmentation, a key character of Annelida, is much more variable than previously thought. Yet, this conclusion does not support the hypothesis that the last common ancestor of Annelida, Arthropoda and Chordata was segmented, assuming several losses along the branches leading to them. As yet no traces of segmentation could be shown in taxa exhibiting serially organized organ systems such as certain Mollusca, while in Sipuncula and Echiura such traces could be demonstrated. An independent origin of segmentation in Annelida, Arthropoda and Chordata thus appears to be more plausible and parsimonious.  相似文献   

13.
Sexual size dimorphism is widespread in shorebirds, yet no tests of the assumption that such size dimorphism extends to functionally significant dimensions of the bill exist. This report presents tests of: (1) the assumption that sexual size dimorphism extends to the feeding structures in sexually size dimorphic bird, and (2) the hypothesis that bill-size variation influences feeding performance in Phalaropus lobatus, the red-necked phalarope. Discriminant function analysis revealed that the sexes of this species can be distinguished on the basis of five body size/bill length variables, but with low accuracy in sexing of females because of misclassification of small females as males. In the shorebird literature, the assumption is generally made that in the absence of selection to the contrary, bill size scales to body size and hence sexual size dimorphism extends to bill size. However, discriminant function analysis of measures from red-necked phalaropes failed to separate the sexes on the basis of either external or internal bill dimensions other than length. Nonetheless, internal dimensions of the upper jaw combined with exposed culmen length explained 86% of the variance in feeding performance of phalaropes; high feeding performance depends on a wide, shallow, complex internal bill structure. This study provides evidence that internal bill dimensions determine feeding performance in a manner consistent with the mechanics of surface tension transport of prey. These results suggest that some dimensions of bill size may be constrained by performance demands and demonstrate that variation in bill morphology has functional consequences. © 1996 Wiley-Liss, Inc.  相似文献   

14.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

15.
Planarians are comprised of populations with different reproductive strategies: exclusively innately asexual (AS), exclusively innately sexual (InS), and seasonally switching. AS worms can be sexualized experimentally by feeding them with minced InS worms, and the resultant worms are characterized as acquired sexual (AqS). Differences between InS and AqS worms are expected to provide important clues to the poorly understood mechanism underlying the regulation of their reproductive mode. Morphological differences were found between InS and AqS worm ovaries, and we showed that the pluripotent stem cells (neoblasts) from InS worms, but not those of AqS worms, have the capacity to initiate the sexual state autonomously via neoblast fraction transplantation. To compare their reproductive mode and ovarian morphology regulation, InS donor neoblast fractions were transplanted into non-lethally X-ray-irradiated AS recipients. All transplants showed stable chimerism and reproduced sexually, suggesting that InS worm neoblasts can initiate sexual state autonomously, even when coexisting with AS worm neoblasts. The chimeras formed extraordinarily large and supernumerary ovaries equivalent to AqS worms, which were not seen in InS worms, suggesting that regulation of ovarian morphology in AS worm-derived cells in response to endogenous sexualizing stimulation distinctly differs from that of InS worms.  相似文献   

16.
We investigate the association between female reproductive investment, absolute size, and sexual size dimorphism in spiders to test the predictions of the fecundity-advantage hypothesis. The relationships between absolute size and sexual size dimorphism and aspects of female reproductive output are examined in comparative analyses using phylogenetically independent contrasts. We provide support for the idea that allometry for sexual dimorphism is the result of variation in female size more so than male size. Regression analyses suggest selection for increased fecundity in females. We argue that fecundity selection provides the only general explanation for the evolution of sexual size dimorphism in spiders.  相似文献   

17.
The phylogeny of the Afro-Asian Lorisoidea is controversial. While postcranial data attest strongly to the monophyly of the Lorisidae, most molecular analyses portray them as paraphyletic and group the Galagidae alternately with the Asian or African lorisids. One of the problems that has bedevilled phylogenetic analysis of the group in the past is the limited number of taxa sampled for both ingroup families. We present the results of a series of phylogenetic analyses based on 635 base pairs (bp) from two mitochondrial genes (12S and 16S rRNA) with and without 36 craniodental characters, for 11 galagid and five lorisid taxa. The outgroup was the gray mouse lemur (Microcebus murinus). Analyses of the molecular data included maximum parsimony (MP), neighbor joining (NJ), maximum likelihood (ML), and Bayesian methods. The model-based analyses and the combined "molecules+morphology" analyses supported monophyly of the Lorisidae and Galagidae. The lorisids form two geographically defined clades. We find no support for the taxonomy of Galagidae as proposed recently by Groves [Primate Taxonomy, Washington, DC: Smithsonian Institution Press. 350 p, 2001]. The taxonomy of Nash et al. [International Journal of Primatology 10:57-80, 1989] is supported by the combined "molecules+morphology" analysis; however, the model-based analyses suggest that Galagoides may be an assemblage of species united by plesiomorphic craniodental characters.  相似文献   

18.
Dicynodonts, a highly successful group of Palaeozoic tetrapods, were herbivores with keratinous beaks, and were frequently equipped with large, neomorphic tusks. Diictodon is a particularly abundant dicynodont genus, allowing statistical investigation of its palaeobiology. Anatomical, morphometric and distributional analyses provide evidence of sexual dimorphism, based on the presence or absence of formidable tusks. Tusk occurrence is also correlated with the presence of a cranial boss on the skull roof and, possibly, with greater cranial size. This earliest well-documented example of dimorphic armament suggests that sexual dimorphism, and the complex social behaviour that accompanies it, have long been characteristic of the synapsid lineage.  相似文献   

19.
Asexual worms of an exclusively fissiparous strain (the OH strain) of the planarian Dugesia ryukyuensis keep developing hermaphroditic reproductive organs and eventually undergo sexual reproduction instead of asexual reproduction, namely fission, if they are fed with sexually mature worms of an exclusively oviparous planarian, Bdellocephala brunnea, suggesting that the sexually mature worms has a sexualizing substance(s). The fully sexualized worms no longer need the feeding on sexual worms to maintain the sexuality. Here, we demonstrate that the sexualized worms produce enough of their own sexualizing substance similar to that contained in B. brunnea. In case of surgical ablation of the sexualized worms, the fragments with sexual organs regenerate to become sexual, while those without sexual organs, namely head fragments, regenerate to return to the asexual state. The asexual regenerants from the sexualized worms are also fully sexualized by being fed with B. brunnea. Additionally, it was reported that head region in sexually mature worms lacks the putative sexualizing substance necessary for complete sexualization (Sakurai, 1981). These results suggest that the fragments without sexual organ lack enough of an amount of the putative sexualizing substance and the sexuality is maintained by the sexualizing substance contained in the sexualized worms.  相似文献   

20.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号