首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic melon and squash containing the coat protein (CP) gene of the aphid transmissible strain WL of cucumber mosaic cucumovirus (CMV) were grown under field conditions to determine if they would assist the spread of the aphid non-transmissible strain C of CMV, possibly through heterologous encapsidation and recombination. Transgenic melon were susceptible to CMV strain C whereas transgenic squash were resistant although the latter occasionally developed chlorotic blotches on lower leaves. Transgenic squash line ZW-20, one of the parents of commercialized cultivar Freedom II, which expresses the CP genes of the aphid transmissible strains FL of zucchini yellow mosaic (ZYMV) and watermelon mosaic virus 2 (WMV 2) potyviruses was also tested. Line ZW-20 is resistant to ZYMV and WMV 2 but is susceptible to CMV. Field experiments conducted over two consecutive years showed that aphid-vectored spread of CMV strain C did not occur from any of the CMV strain C-challenge inoculated transgenic plants to any of the uninoculated CMV-susceptible non- transgenic plants. Although CMV was detected in 3% (22/764) of the uninoculated plants, several assays including ELISA, RT- PCR-RFLP, identification of CP amino acid at position 168, and aphid transmission tests demonstrated that these CMV isolates were distinct from strain C. Instead, they were non-targeted CMV isolates that came from outside the field plots. This is the first report on field experiments designed to determine the potential of transgenic plants expressing CP genes for triggering changes in virus-vector specificity. Our results indicate that transgenic plants expressing CP genes of aphid transmissible strains of CMV, ZYMV, and WMV 2 are unlikely to mediate the spread of aphid non-transmissible strains of CMV. This finding is of practical relevance because transgenic crops expressing the three CP genes are targeted for commercial release, and because CMV is economically important, has a wide host range, and is widespread worldwide.  相似文献   

2.
Pathogens can alter host phenotypes in ways that influence interactions between hosts and other organisms, including insect disease vectors. Such effects have implications for pathogen transmission, as well as host exposure to secondary pathogens, but are not well studied in natural systems, particularly for plant pathogens. Here, we report that the beetle‐transmitted bacterial pathogen Erwinia tracheiphila – which causes a fatal wilt disease – alters the foliar and floral volatile emissions of its host (wild gourd, Cucurbita pepo ssp. texana) in ways that enhance both vector recruitment to infected plants and subsequent dispersal to healthy plants. Moreover, infection by Zucchini yellow mosaic virus (ZYMV), which also occurs at our study sites, reduces floral volatile emissions in a manner that discourages beetle recruitment and therefore likely reduces the exposure of virus‐infected plants to the lethal bacterial pathogen – a finding consistent with our previous observation of dramatically reduced wilt disease incidence in ZYMV‐infected plants.  相似文献   

3.
Squash (Cucurbita pepo) belongs to Cucurbitaceae family. Every year Cucurbitaceae are planted world wide. They are one of the most important economic crops. Cucurbitaceae are threatened by viruses. Many viruses damage the plants of this family. Since nine viruses have been reported on squash from Iran. In this survey, during 2002--2003, to determine the distribution of Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV), 466 samples were collected from squash field in Tehran province. Infected plants showing symptoms such as: mosaic, yellowing, deformation, shoestring of leaves and fruit deformation and yield reduction. Distribution of CMV, ZYMV and WMV were determined by DAS-ELISA. Thepercentage of ZYMV, WMV and CMV were 35.6, 26.1 and 25.1% respectively. Triple infection (CMV+ZYMV+WMV) were found in 6.4% of samples. ZYMV were found the most frequently the viruses. This is the first report of WMV on squash in Tehran province.  相似文献   

4.
Around 39 well characterised viruses affect cucurbits crops in developing countries and their viral diversity may be the consequence for genetic and ecological diversity of their hosts. Indeed, cucurbits are grown in variety of climatic, environmental and agricultural conditions, and this may provide more or less favourable conditions for the specific viruses or their hosts. The presence of various viral diseases caused by different viruses in Maharashtra was studied from the infected samples collected from cucurbits and melons during the survey conducted in 2009–2010 in different locations. The virus isolates collected from various cucurbitaceous crops were established and their host ranges were studied by sap transmission. The study revealed Cucumber Mosaic Virus (CMV), Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV) and Cucumber green mottle mosaic virus infections predominately found in Nashik region, and Watermelon bud necrosis virus (WBNV), CMV, ZYMV, WMV and Watermelon silver mottle virus (WSMoV) infections in Aurangabad and Paithan regions. In Sangamner region, the crop was mostly affected by WBNV, ZYMV and WSMoV, and CMV was found only in Sillod region. The protocols for performing sap transmission tests in assay hosts were standardised for ZYMV, CMV and WBNV. Using direct antigen-coating enzyme-linked immunosorbent assay, of all the plant parts, young leaves were found to have high concentration of virus and suitable for virus detection in screening programmes. CMV and ZYMV was found to have high concentration of virus and suitable for virus detection in screening programmes.  相似文献   

5.
Insect-vectored plant viruses can induce changes in plant phenotypes,thus influencing plant-vector interactions in a way that may promote their dispersal according to their mode of transmission (i.e.,circulative vs.noncirculative).This indirect vector manipulation requires host-virus-vector coevolution and would thus be effective solely in very specific plant-virus-vector species associations.Some studies suggest this manipulation may depend on multiple factors relative to various intrinsic characteristics of vectors such as transmission efficiency.In anintegrative study,we tested the effects of infection of the Brassicaceae Camelina sativa with the noncirculative Cauliflower mosaic virus (CaMV)or the circulative Turnip yellows virus (TuYV)on the host-plant colonization of two aphid species differing in their virus transmission efficiency:the polyphagous Myzus persicae,efficient vector of both viruses,and the Brassicaceae specialist Brevicoryne brassicae,poor vector of TuYV and efficient vector of CaMV.Results confirmed the important role of virus mode of transmission as plant-mediated effects of CaMV on the two aphid species induced negative alterations of feeding behavior (i.e.,decreased phloem sap ingestion)and performance that were both conducive for virus fitness by promoting dispersion after a rapid acquisition.In addition,virus transmission efficiency may also play a role in vector manipulation by viruses as only the responses of the efficient vector to plant-mediated effects of TuYV,that is,enhanced feeding behavior and performances,were favorable to their acquisition and further dispersal.Altogether,this work demonstrated that vector transmission efficiency also has to be considered when studying the mechanisms underlying vector manipulation by viruses.Our results also re- inforce the idea that vector manipulation requires coevolution between plant,virus and vector.  相似文献   

6.
High resistance to zucchini yellow mosaic virus-China strain (ZYMV-CH) and moderate resistance to watermelon mosaic virus (WMV) were found in a selection of PI 595203 (Citrullus lanatus var. lanatus), an Egusi type originally collected in Nigeria. Mixed inoculations showed primarily that these two viruses have no cross-protection. This fact may explain the high frequency of mixed infection often observed in commercial fields. When plants were inoculated with a mixture of the two viruses, the frequency of plants resistant to ZYMV was lower than expected, indicating that WMV infection may reduce the ability of a plant to resist ZYMV. We studied inheritance of resistance to ZYMV-CH and WMV, using crosses between a single-plant selection of PI 595203 and the ZYMV-susceptible watermelon inbreds 9811 and 98R. According to virus ratings of the susceptible parents, the resistant parent, and the F1, F2, and BC1 generations, resistance to ZYMV-CH was conferred by a single recessive gene, for which the symbol zym-CH is suggested. The high tolerance to WMV was controlled by at least two recessive genes.  相似文献   

7.
Cantaloupe line CZW-30 containing coat protein gene constructs of cucumber mosaic cucumovirus (CMV), zucchini yellow mosaic potyvirus (ZYMV), and watermelon mosaic virus 2 potyvirus (WMV-2) was investigated in the field over two consecutive years for resistance to infections by CMV, ZYMV, and/or WMV-2. Resistance was evaluated under high disease pressure achieved by mechanical inoculations and/or natural challenge inoculations by indigenous aphid vectors. Across five different trials, homozygous plants were highly resistant in that they never developed systemic symptoms as did the nontransformed plants but showed few symptomatic leaves confined close to the vine tips. Hemizygous plants exhibited a significant delay (2–3 weeks) in the onset of disease compared to control plants but had systemic symptoms 9–10 weeks after transplanting to the field. Importantly, ELISA data revealed that transgenic plants reduced the incidence of mixed infections. Only 8% of the homozygous and 33% of the hemizygous plants were infected by two or three viruses while 99% of the nontransformed plants were mixed infected. This performance is of epidemiological significance. In addition, control plants were severely stunted (44% reduction in shoot length) and had poor fruit yield (62% loss) compared to transgenic plants, and most of their fruits (60%) were unmarketable. Remarkably, hemizygous plants yielded 7.4 times more marketable fruits than control plants, thus suggesting a potential commercial performance. This is the first report on extensive field trials designed to assess the resistance to mixed infection by CMV, ZYMV, and WMV-2, and to evaluate the yield of commercial quality cantaloupes that are genetically engineered.  相似文献   

8.
The temporal and spatial distribution of zucchini yellow mosaic potyvirus (ZYMV) was studied in a 3000‐m2 zucchini squash field. The first infected plants were found 4 weeks after the field was exposed to virus source plants. The infection increased to nearly 74% by the end of the study. Alate aphids were active from the beginning of the study and 43 species were trapped in the field. Flights of vector species Acyrthosiphon pisum and Myzus persicae peaked during the fourth week which resulted in high virus incidence 4 weeks later. There was a significant correlation between the number of vectors caught in yellow pan traps and the number of infected plants in the field. In laboratory studies evaluating 11 aphid species, Aphis pomi de Geer was identified as a new vector species of ZYMV. Although this aphid was not caught in our field studies, it may be an important contributor in other areas where cucurbits are grown in close proximity to apple or other hosts of this aphid.  相似文献   

9.
The spatial and temporal patterns of aphid-vectored spread of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) were monitored over two consecutive years in plantings of nontransgenic and transgenic squash ZW-20H (commercial cv. Freedom II) and ZW-20B, both expressing the coat protein genes of ZYMV and WMV. All test plants were surrounded by nontransgenic plants that were mechanically inoculated with ZYMV or WMV, and served as primary virus source. Across all trials, none of the transgenic plants exhibited systemic symptoms upon infection by ZYMV and WMV but a few of them developed localized chlorotic dots and/or blotches, and had low mixed infection rates [4% (6 of 139) of ZW-20H and 9% (13 of 139) of ZW-20B], as shown by ELISA. Geostatistical analysis of ELISA positive transgenic plants indicated, (i) a lack of spatial relationship on spread of ZYMV and WMV for ZW-20H with flat omnidirectional experimental semivariograms that fitted poorly theoretical models, and (ii) some extent of spatial dependence on ZYMV spread for ZW-20B with a well structured experimental semivariogram that fitted poorly theoretical models during the first but not the second growing season. In contrast, a strong spatial dependence on spread of ZYMV and WMV was found for nontransgenic plants, which developed severe systemic symptoms, had prevalent mixed infection rates (62%, 86 of 139), and well-defined omnidirectional experimental semivariograms that fitted a spherical model. Geostatistical data were sustained by virus transmission experiments with Myzus persicae in screenhouses, showing that commercial transgenic squash ZW-20H alter the dynamics of ZYMV and WMV epidemics by preventing secondary plant-to-plant spread.  相似文献   

10.
Spread of the aphid nontransmissible Zucchini yellow mosaicvirus virus (ZYMV) strain MV was monitored over two consecutive years in field plots of nontransgenic and transgenic squash expressing the coat protein (CP) gene of the aphid transmissible strain FL of Watermelon mosaic virus (WMV). The experimental approach was to mechanically inoculate plants with ZYMV strain MV and to assess subsequent transmissions, assumed to be vectored by aphids, of this strain to nonmechanically inoculated plants. Strain MV was distinguished from other ZYMV isolates by a threonine at position 10 of the CP or by a distinct electrophoretic pattern of a Nla IV-digested genomic cDNA fragment generated by RT-PCR. ZYMV strain MV was not detected in fields of nontransgenic plants, but was apparently aphid transmitted to 77 of 3,700 plants (2%) in transgenic fields. Despite the availability of numerous test plants and conditions of high disease pressure but low selection pressure, an epidemic of ZYMV strain MV did not develop in fields of transgenic plants. In contrast, the aphid transmissible ZYMV strain NY was aphid-transmitted to 99% (446/450) of transgenic plants under similar conditions. The relevance of these results in assessing environmental risks of transgenic plants expressing CP transgenes is discussed.  相似文献   

11.
The transmission of insect‐vectored diseases entails complex interactions among pathogens, hosts and vectors. Chemistry plays a key role in these interactions; yet, little work has addressed the chemical ecology of insect‐vectored diseases, especially in plant pathosystems. Recently, we documented effects of Cucumber mosaic virus (CMV) on the phenotype of its host (Cucurbita pepo) that influence plant‐aphid interactions and appear conducive to the non‐persistent transmission of this virus. CMV reduces host‐plant quality for aphids, causing rapid vector dispersal. Nevertheless, aphids are attracted to the elevated volatile emissions of CMV‐infected plants. Here, we show that CMV infection (1) disrupts levels of carbohydrates and amino acids in leaf tissue (where aphids initially probe plants and acquire virions) and in the phloem (where long‐term feeding occurs) in ways that reduce plant quality for aphids; (2) causes constitutive up‐regulation of salicylic acid; (3) alters herbivore‐induced jasmonic acid biosynthesis as well as the sensitivity of downstream defences to jasmonic acid; and (4) elevates ethylene emissions and free fatty acid precursors of volatiles. These findings are consistent with previously documented patterns of aphid performance and behaviour and provide a foundation for further exploration of the genetic mechanisms responsible for these effects and the evolutionary processes that shape them.  相似文献   

12.
Direct and indirect interactions between insect‐borne pathogens and their host plants are reviewed in the context of theoretical analyses of the evolution of virulence. Unlike earlier theories, which maintained that parasites should evolve to be harmless or even beneficial to their hosts, recent models predict that coevolution between pathogen and host may lead to virulence or avirulence, depending on the pathogen transmission system. The studies reviewed here support the hypothesis that virulence can be advantageous for insect‐borne pathogens of plants. Virulent pathogens may be transmitted more readily by vector insects and are likely to induce stronger disease symptoms, thereby potentially making the plant more attractive to vectors. In contrast, the transmission advantage of virulence for seed‐transmitted pathogens is lower and the costs of virulence are high. Pathogens may sometimes benefit plants via indirect interactions that arise through relationships with other organisms. Evidence for the effects of insect‐borne pathogens on plant competition, herbivory, and parasitism also is reviewed, but few studies have measured the outcome of both direct and indirect interactions. Benefits of pathogen infection that accrue to plants from indirect interactions may sometimes outweigh the direct detrimental effects of virulence.  相似文献   

13.
Viral diseases that could cause important economic losses often affect cucurbits, but only limited information on the incidence and spatial distribution of specific viruses is currently available. During the 2005 and 2006 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo), squash and pumpkin (Cucurbita pepo), watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) crops of the Spanish Community of Valencia (eastern Spain), where several counties have a long standing tradition of cucurbit cultivation and production. Surveyed fields were chosen with no previous information as to their sanitation status, and samples were taken from plants that showed virus‐like symptoms. Samples were analysed using molecular hybridisation to detect Beet pseudo‐yellows virus (BPYV), Cucurbit aphid‐borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ring spot virus (PRSV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). We collected 1767 samples from 122 independent field plots; out of these, approximately 94% of the samples were infected by at least one of these viruses. Percentages for the more frequently detected viruses were 35.8%, 27.0%, 16.5% and 7.2% for CABYV, WMV, PRSV and ZYMV, respectively, and significant deviations were found on the frequency distributions based on either the area or the host sampled. The number of multiple infections was high (average 36%), particularly for squash (more than 57%), with the most frequent combination being WMV + PRSV (12%) followed by WMV + CABYV (10%). Sequencing of WMV complementary DNA suggested that ‘emerging’ isolates have replaced the ‘classic’ ones, as described in southern regions of France, leading us to believe that cucurbit cultivation could be severely affected by these new, emerging isolates.  相似文献   

14.
Both biotic and abiotic stressors can elicit broad-spectrum plant resistance against subsequent pathogen challenges. However, we currently have little understanding of how such effects influence broader aspects of disease ecology and epidemiology in natural environments where plants interact with multiple antagonists simultaneously. In previous work, we have shown that healthy wild gourd plants (Cucurbita pepo ssp. texana) contract a fatal bacterial wilt infection (caused by Erwinia tracheiphila) at significantly higher rates than plants infected with Zucchini yellow mosaic virus (ZYMV). We recently reported evidence that this pattern is explained, at least in part, by reduced visitation of ZYMV-infected plants by the cucumber beetle vectors of E. tracheiphila. Here we examine whether ZYMV-infection may also directly elicit plant resistance to subsequent E. tracheiphila infection. In laboratory studies, we assayed the induction of key phytohormones (SA and JA) in single and mixed infections of these pathogens, as well as in response to the feeding of A. vittatum cucumber beetles on healthy and infected plants. We also tracked the incidence and progression of wilt disease symptoms in plants with prior ZYMV infections. Our results indicate that ZYMV-infection slightly delays the progression of wilt symptoms, but does not significantly reduce E. tracheiphila infection success. This observation supports the hypothesis that reduced rates of wilt disease in ZYMV-infected plants reflect reduced visitation by beetle vectors. We also documented consistently strong SA responses to ZYMV infection, but limited responses to E. tracheiphila in the absence of ZYMV, suggesting that the latter pathogen may effectively evade or suppress plant defenses, although we observed no evidence of antagonistic cross-talk between SA and JA signaling pathways. We did, however, document effects of E. tracheiphila on induced responses to herbivory that may influence host-plant quality for (and hence pathogen acquisition by) cucumber beetles.  相似文献   

15.
Summary Zucchini yellow mosaic virus (ZYMV) and Aphis gossypii Glover are two components of a recently identified plant-parasite system that provides an excellent opportunity to study interrelations between a virus and a vector that share the same host, but have no direct physiological interaction. In a field experiment we documented numbers of alate and apterous A. gossypii on healthy Cucurbita pepo and on plants inoculated with virus 0, 7, 14, and 21 days before aphid infestation. When plants were inoculated and infested simultaneously, more than twice as many alatae were produced after 20 days of colony growth than on any other treatment. This indicates that properties unique to the early stages of viral infection somehow stimulated wing formation. Because it is spread by the activities of alatae, virus dispersal would be greater as a result of these properties. Developmental rate, total numbers of aphids, and numbers of alatae and apterae decreased as the time between virus inoculation and aphid colonization increased.  相似文献   

16.
1. Although many vector‐borne pathogens are transmitted by an array of vector species, most studies do not account for the potential effects of species interactions. 2. By manipulating conspecific and heterospecific vector density in small experimental mesocosms, this study disentangled the impact of vector density and community composition on vector movement and plant virus transmission in the potato virus Y system. 3. The following predictions were tested: (i) increasing aphid density will increase aphid movement and virus transmission; (ii) adding low‐efficiency vectors and thereby decreasing the average transmission efficiency of the vector assemblage will decrease virus transmission; and (iii) aphid movement and the average vector transmission efficiency will mediate the effect of aphid density and community composition on virus transmission. 4. It was found that initial density positively affected aphid movement, but had no effect on virus transmission, and that conspecific density was more important than heterospecific density. Conversely, community composition affected both aphid movement and virus transmission. These effects were driven by species identity, rather than species richness per se. 5. The results of this study emphasise the importance of accounting for vector behaviour, and analysing it within the context of the wider vector assemblage.  相似文献   

17.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

18.
Most studies of virulence of infection focus on pairwise host–parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.  相似文献   

19.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号