首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Characterizing ensembles of intrinsically disordered proteins is experimentally challenging because of the ill-conditioned nature of ensemble determination with limited data and the intrinsic fast dynamics of the conformational ensemble. Amide I two-dimensional infrared (2D IR) spectroscopy has picosecond time resolution to freeze structural ensembles as needed for probing disordered-protein ensembles and conformational dynamics. Also, developments in amide I computational spectroscopy now allow a quantitative and direct prediction of amide I spectra based on conformational distributions drawn from molecular dynamics simulations, providing a route to ensemble refinement against experimental spectra. We performed a Bayesian ensemble refinement method on Ala–Ala–Ala against isotope-edited Fourier-transform infrared spectroscopy and 2D IR spectroscopy and tested potential factors affecting the quality of ensemble refinements. We found that isotope-edited 2D IR spectroscopy provides a stringent constraint on Ala–Ala–Ala conformations and returns consistent conformational ensembles with the dominant ppII conformer across varying prior distributions from many molecular dynamics force fields and water models. The dominant factor influencing ensemble refinements is the systematic frequency uncertainty from spectroscopic maps. However, the uncertainty of conformer populations can be significantly reduced by incorporating 2D IR spectra in addition to traditional Fourier-transform infrared spectra. Bayesian ensemble refinement against isotope-edited 2D IR spectroscopy thus provides a route to probe equilibrium-complex protein ensembles and potentially nonequilibrium conformational dynamics.  相似文献   

3.

Background

Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering.

Results

The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions.

Conclusions

The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources.  相似文献   

4.
At equilibrium, every energetically feasible conformation of a protein occurs with a non-zero probability. Quantitative analysis of protein flexibility is thus synonymous with determining the proper Boltzmann-weighting of this conformational distribution. The exchange reactivity of solvent-exposed amide hydrogens greatly varies with conformation, while the short-lived peptide anion intermediate implies an insensitivity to the dynamics of conformational motion. Amides that are well-exposed in model conformational ensembles of ubiquitin vary a million-fold in exchange rates which continuum dielectric methods can predict with an rmsd of 3. However, the exchange rates for many of the more rarely exposed amides are markedly overestimated in the PDB-deposited 2K39 and 2KN5 ubiquitin ensembles, while the 2NR2 ensemble predictions are largely consistent with those of the Boltzmann-weighted conformational distribution sampled at the level of 1%. The correlation between the fraction of solvent-accessible conformations for a given amide hydrogen and the exchange rate constant for that residue provides a useful monitor of the degree of completeness with which a given ensemble has sampled the energetically accessible conformational space. These exchange predictions correlate with the degree to which each ensemble deviates from a set of 46 ubiquitin X-ray structures. Kolmogorov-Smirnov analysis for the distribution of intra- and inter-ensemble pairwise structural rmsd values assisted the identification of a subensemble of 2K39 that eliminates the overestimations of hydrogen exchange rates observed for the full ensemble. The relative merits of incorporating experimental restraints into the conformational sampling process are compared to using these restraints as filters to select subpopulations consistent with the experimental data.  相似文献   

5.
Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations. However, instead of examining individual conformations it is in many cases more relevant to analyse ensembles of conformations that have been obtained either through experiments or from methods such as molecular dynamics simulations. We here present three approaches that can be used to compare conformational ensembles in the same way as the root mean square deviation is used to compare individual pairs of structures. The methods are based on the estimation of the probability distributions underlying the ensembles and subsequent comparison of these distributions. We first validate the methods using a synthetic example from molecular dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of conformations better than standard single-molecule refinement.  相似文献   

6.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using “Backrub” motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs). Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.  相似文献   

8.
Small-angle X-ray scattering (SAXS) experiments are increasingly used to probe RNA structure. A number of forward models that relate measured SAXS intensities and structural features, and that are suitable to model either explicit-solvent effects or solute dynamics, have been proposed in the past years. Here, we introduce an approach that integrates atomistic molecular dynamics simulations and SAXS experiments to reconstruct RNA structural ensembles while simultaneously accounting for both RNA conformational dynamics and explicit-solvent effects. Our protocol exploits SAXS pure-solute forward models and enhanced sampling methods to sample an heterogenous ensemble of structures, with no information towards the experiments provided on-the-fly. The generated structural ensemble is then reweighted through the maximum entropy principle so as to match reference SAXS experimental data at multiple ionic conditions. Importantly, accurate explicit-solvent forward models are used at this reweighting stage. We apply this framework to the GTPase-associated center, a relevant RNA molecule involved in protein translation, in order to elucidate its ion-dependent conformational ensembles. We show that (a) both solvent and dynamics are crucial to reproduce experimental SAXS data and (b) the resulting dynamical ensembles contain an ion-dependent fraction of extended structures.  相似文献   

9.
Protection factors obtained from equilibrium hydrogen exchange experiments are an important source of structural information on both native and nonnative states of proteins. We present a method for determining ensembles of protein structures by using hydrogen exchange data as restraints in molecular dynamics simulations in conjunction with an empirical force-field. The method is applied to determine the ensemble of structures representing the native state of chymotrypsin inhibitor 2 (CI2), including the rare, large fluctuations responsible for hydrogen exchange.  相似文献   

10.
Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.  相似文献   

11.
Hoerner JK  Xiao H  Kaltashov IA 《Biochemistry》2005,44(33):11286-11294
Structural and dynamic properties of a partially folded conformation (A-state) of ubiquitin are studied using amide hydrogen exchange in solution (HDX) and mass spectrometric detection. A clear distinction between the native state of the protein and the A-state can be made when HDX is carried out in a semicorrelated regime. Convoluted exchange patterns are interpreted with the aid of HDX simulations in a three-state system (highly structured, partially unstructured, and fully unstructured states). The data clearly indicate a highly dynamic character of the non-native state. Furthermore, combination of HDX and protein ion fragmentation in the gas phase [by means of collision-induced dissociation (CAD)] is used to evaluate the conformational stability of various protein segments specifically in the molten globular state. Chain flexibility appears to be distributed very unevenly in this non-native conformation. The highest degree of structural disorder is displayed by the C-terminal segment (Gly(53)-Gly(76)), which was previously suggested to form a transient alpha-helix. The least dynamic segment of ubiquitin in the A-state is Thr(9)-Glu(18) (which was previously suggested to form a stable nativelike beta-strand), with the adjacent segments exhibiting somewhat diminished conformational stability. The study also demonstrates the power of mass spectrometry as a tool in providing conformer-specific information about the structure and dynamics of both native and non-native protein states coexisting in solution under equilibrium.  相似文献   

12.
13.
When accounting for structural fluctuations or measurement errors, a single rigid structure may not be sufficient to represent a protein. One approach to solve this problem is to represent the possible conformations as a discrete set of observed conformations, an ensemble. In this work, we follow a different richer approach, and introduce a framework for estimating probability density functions in very high dimensions, and then apply it to represent ensembles of folded proteins. This proposed approach combines techniques such as kernel density estimation, maximum likelihood, cross-validation, and bootstrapping. We present the underlying theoretical and computational framework and apply it to artificial data and protein ensembles obtained from molecular dynamics simulations. We compare the results with those obtained experimentally, illustrating the potential and advantages of this representation.  相似文献   

14.
15.
It is widely recognized that representing a protein as a single static conformation is inadequate to describe the dynamics essential to the performance of its biological function. We contrast the amino acid displacements below and above the protein dynamical transition temperature, TD∼215K, of hen egg white lysozyme using X-ray crystallography ensembles that are analyzed by molecular dynamics simulations as a function of temperature. We show that measuring structural variations across an ensemble of X-ray derived models captures the activation of conformational states that are of functional importance just above TD, and they remain virtually identical to structural motions measured at 300K. Our results highlight the ability to observe functional structural variations across an ensemble of X-ray crystallographic data, and that residue fluctuations measured in MD simulations at room temperature are in quantitative agreement with the experimental observable.  相似文献   

16.
17.
18.
Our study on the highly charged N-terminal peptide of the human chemokine receptor CXCR3 by spectroscopic methods in solution and by means of molecular dynamics simulations showed that the charge content modulates the intrinsic structural preference of its flexible backbone. Collectively, our findings suggest that the structural organization of a protein should be seen as a part of a continuum in which the ratio between electrostatic and hydrophobic interactions and the intrinsic flexibility are important properties used to optimize the folding. When this ratio changes and the structure is intrinsically flexible, the structural organization of the system moves along the continuum of the possible conformational states. By all this combined information, one can describe the structure of CXCR3(1–48) as an ensemble of conformations. In fact, the peptide shows stretches of negative charges embedded in a flexible sequence which can be used to maximize promiscuous interactions relevant to molecular recognition but globally the peptide appears as a poly-structured globule-like ensemble that is dynamically stabilized by H-bonds. We have approached the study of the most populated ensembles with subset selection to explain our experimental data also by evidencing that the changes into the fraction of charged residues discriminate between dynamically poly-structured states, conceivably because of small free energy barriers existing between the different conformations of CXCR3(1–48). Therefore, the overlap of a highly flexible backbone, negatively charged residues and sites which can be modified by post-translational modifications represent the structural organization that controls the molecular mechanisms underlying the biological functions carried out by CXCR3(1–48).  相似文献   

19.
Protein kinases use ATP as a phosphoryl donor for the posttranslational modification of signaling targets. It is generally thought that the binding of this nucleotide induces conformational changes leading to closed, more compact forms of the kinase domain that ideally orient active-site residues for efficient catalysis. The kinase domain is oftentimes flanked by additional ligand binding domains that up- or down-regulate catalytic function. C-terminal Src kinase (Csk) is a multidomain tyrosine kinase that is up-regulated by N-terminal SH2 and SH3 domains. Although the X-ray structure of Csk suggests the enzyme is compact, X-ray scattering studies indicate that the enzyme possesses both compact and open conformational forms in solution. Here, we investigated whether interactions with the ATP analog AMP-PNP and ADP can shift the conformational ensemble of Csk in solution using a combination of small angle x-ray scattering and molecular dynamics simulations. We find that binding of AMP-PNP shifts the ensemble towards more extended rather than more compact conformations. Binding of ADP further shifts the ensemble towards extended conformations, including highly extended conformations not adopted by the apo protein, nor by the AMP-PNP bound protein. These ensembles indicate that any compaction of the kinase domain induced by nucleotide binding does not extend to the overall multi-domain architecture. Instead, assembly of an ATP-bound kinase domain generates further extended forms of Csk that may have relevance for kinase scaffolding and Src regulation in the cell.  相似文献   

20.
Nanda V  DeGrado WF 《Proteins》2005,59(3):454-466
In the absence of experimental structural determination, numerous methods are available to indirectly predict or probe the structure of a target molecule. Genetic modification of a protein sequence is a powerful tool for identifying key residues involved in binding reactions or protein stability. Mutagenesis data is usually incorporated into the modeling process either through manual inspection of model compatibility with empirical data, or through the generation of geometric constraints linking sensitive residues to a binding interface. We present an approach derived from statistical studies of lattice models for introducing mutation information directly into the fitness score. The approach takes into account the phenotype of mutation (neutral or disruptive) and calculates the energy for a given structure over an ensemble of sequences. The structure prediction procedure searches for the optimal conformation where neutral sequences either have no impact or improve stability and disruptive sequences reduce stability relative to wild type. We examine three types of sequence ensembles: information from saturation mutagenesis, scanning mutagenesis, and homologous proteins. Incorporating multiple sequences into a statistical ensemble serves to energetically separate the native state and misfolded structures. As a result, the prediction of structure with a poor force field is sufficiently enhanced by mutational information to improve accuracy. Furthermore, by separating misfolded conformations from the target score, the ensemble energy serves to speed up conformational search algorithms such as Monte Carlo-based methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号