共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells. 相似文献
2.
3.
4.
5.
Veiseth SV Rahman MA Yap KL Fischer A Egge-Jacobsen W Reuter G Zhou MM Aalen RB Thorstensen T 《PLoS genetics》2011,7(3):e1001325
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. 相似文献
6.
Vempati RK 《Molecular biology reports》2012,39(1):303-308
Histone covalent modifications play a significant role in the regulation of chromatin structure and function during DNA damage.
Hyperacetylation of histones is a DNA damage dependent post translational modification in yeast and mammals. Although acetylation
of histones during DNA damage is well established, specific lysine residues that are acetylated is being understood very recently
in mammals. Here, in the present study, acetylation of three different lysine residues Histone3Lysine 9 (H3K9), Histone3Lysine
56 (H3K56) and Histone4Lysine 16 (H4K16) were probed with specific antibodies in mammalian cell lines treated with genotoxic
agents that induce replication stress or S-phase dependent double strand breaks. Immunoblotting results have shown that DNA
damage associated with replication arrest induce acetylation of H3K56 and H4K16 but not H3K9 in mammals. Immunofluorescence
experiments further confirmed that acetylated H3K56 and H4K16 form nuclear foci at the site of DNA double strand breaks. Colocalization
of H3K56ac with γ H2AX and replication factor PCNA proved the existence of this modification at the site of DNA damage and
its probable role in DNA damage repair. Put together, the present data suggests that acetylation of H3K56 and H4K16 are potent
DNA damage dependent histone modifications but not H3K9 in mammals. 相似文献
7.
8.
9.
10.
Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells 总被引:3,自引:1,他引:3 下载免费PDF全文
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells. 相似文献
11.
Expression of Ribosomal RNA and Protein Genes in Human Embryonic Stem Cells Is Associated With the Activating H3K4me3 Histone Mark 下载免费PDF全文
Sayyed K. Zaidi Joseph R. Boyd Rodrigo A. Grandy Ricardo Medina Jane B. Lian Gary S. Stein Janet L. Stein 《Journal of cellular physiology》2016,231(9):2007-2013
12.
13.
14.
Andrew J. Price Mohan C. Manjegowda Jessica Kain Swetha Anandh Irina M. Bochkis 《Aging cell》2020,19(2)
Post‐translational modifications of histone tails play a crucial role in gene regulation. Here, we performed chromatin profiling by quantitative targeted mass spectrometry to assess all possible modifications of the core histones. We identified a bivalent combination, a dually marked H3K9me3/H3K14ac modification in the liver, that is significantly decreased in old hepatocytes. Subsequent sequential ChIP‐Seq identified dually marked single nucleosome regions, with reduced number of sites and decreased signal in old livers, confirming mass spectrometry results. We detected H3K9me3 and H3K14ac bulk ChIP‐Seq signal in reChIP nucleosome regions, suggesting a correlation between H3K9me3/H3K14ac bulk bivalent genomic regions and dually marked single nucleosomes. Histone H3K9 deacetylase Hdac3, as well as H3K9 methyltransferase Setdb1, found in complex Kap1, occupied both bulk and single nucleosome bivalent regions in both young and old livers, correlating to presence of H3K9me3. Expression of genes associated with bivalent regions in young liver, including those regulating cholesterol secretion and triglyceride synthesis, is upregulated in old liver once the bivalency is lost. Hence, H3K9me3/H3K14ac dually marked regions define a poised inactive state that is resolved with loss of one or both of the chromatin marks, which subsequently leads to change in gene expression. 相似文献
15.
In zygotes, a global loss of DNA methylation occurs selectively in the paternal pronucleus before the first cell division, concomitantly with the appearance of modified forms of 5-methylcytosine. The adjacent maternal pronucleus and certain paternally-imprinted loci are protected from this process. Nakamura et al. recently clarified the molecular mechanism involved: PGC7/Stella/Dppa3 binds to dimethylated histone 3 lysine 9 (H3K9me2), thereby blocking the activity of the Tet3 methylcytosine oxidase in the maternal genome as well as at certain imprinted loci in the paternal genome.DNA methylation is a crucial epigenetic modification that regulates imprinting (differential silencing of maternal or paternal alleles) and repression of retrotransposons and other parasitic DNA, as well as possibly X-chromosome inactivation and cellular differentiation. DNA methylation needs to be faithfully maintained throughout the life cycle, since loss of DNA methylation can result in gene dosage problems, dysregulation of gene expression, and genomic instability due to retrotransposon reactivation1. Nevertheless, genome-wide loss of DNA methylation has been observed during germ cell development2 and in the paternal pronucleus soon after fertilization3.For almost a decade, the global decrease of DNA methylation observed in the paternal genome within a few hours of fertilization was ascribed to an “active”, replication-independent process3. The maternal pronucleus is spared and instead undergoes “passive”, replication-dependent demethylation during early embryogenesis, arising from inhibition of the DNA maintenance methyltransferase Dnmt1 (Dnmt1 is normally recruited to newly-replicated DNA because of the high affinity of its obligate partner, UHRF1, for hemi-methylated DNA strands, which are produced from symmetrically-methylated CpG dinucleotides as a result of DNA replication). The basis for active and passive demethylation of the paternal and maternal genomes remained a mystery until proteins of the TET family – TET1, TET2 and TET3 in humans – were discovered to be Fe(II)- and 2-oxoglutarate-dependent enzymes capable of oxidizing 5-methylcytosine (5mC) in DNA4,5,6. TET enzymes serially convert 5mC into 5-hydroxymethyl-cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC)5,7,8.With the generation of specific antibodies to 5hmC, it became clear that the supposed “active demethylation” of the paternal pronucleus in mouse zygote after fertilization was due to the inability of anti-5mC antibodies to recognize 5hmC and other 5mC oxidation products9,10. The enzyme responsible for 5mC oxidation was shown to be Tet3, which unlike Tet1 and Tet2 is highly expressed in mouse oocytes and zygotes. RNAi-mediated depletion of Tet3 decreased the staining of the paternal pronucleus with 5hmC, suggesting that immediately after fertilization, Tet3 in the zygote selectively oxidizes 5mC in the paternal genome to 5hmC9,10.How is the maternal pronucleus protected from Tet3 activity? Nakamura et al.11 previously showed that zygotes lacking PGC7/Stella/Dppa3 lose asymmetric regulation of DNA methylation, instead showing global loss of 5mC staining in both paternal and maternal pronuclei. This was correlated with hypomethylation at several maternally-imprinted loci (Peg1, Peg3, Peg10) in PGC7-deficient zygotes, as judged by bisulfite sequencing. Further, certain paternally-imprinted loci (H19, Rasgrf1), which are normally protected from global loss of methylation in the paternal genome, also became hypomethylated in PGC7-deficient zygotes. These data suggested that PGC7 protects the maternal genome, as well as certain paternally imprinted loci, from loss of 5mC.In their recent publication, Nakamura et al.12 elegantly extended these findings to address the mechanism involved. Based on the fact that a major difference between maternal and paternal genomes is that the maternal genome contains histones, whereas the DNA of the entering sperm is tightly packaged with protamine, they asked whether PGC7 recognizes specific histone marks. Indeed, the maternal genome harbors considerable levels of the histone mark H3K9me211, leading them to examine whether PGC7 distinguishes maternal and paternal genomes by recognizing H3K9me2 in the maternal genome. Using wild-type (WT) ES cells and ES cells deficient in the G9a lysine methyltransferase which generates H3K9me2 mark, they showed that PGC7 associated loosely with nucleosomes and chromatin lacking H3K9me2, but tightly if H3K9me2 was present. The binding was recapitulated using recombinant bacterially-expressed PGC7 and histone tail peptides, indicating a direct interaction of PGC7 with the H3K9me2 mark. In agreement, genomic loci enriched with H3K9me2 recruited PGC7 as judged by chromatin immunoprecipitation (ChIP), but this recruitment was abrogated in G9a-deficient ES cells. These data indicated that PGC7 targets genomic regions occupied by nucleosomes containing H3K9me2 (Figure 1); an interesting extension would be to ask whether loss of maternal G9a also results in 5hmC conversion in the maternal pronucleus in zygotes.Open in a separate windowFigure 1Schematic view of paternal (left) and maternal (right) genomes soon after fertilization. Paternal and maternal pronuclei are indicated with immunostaining results in the boxes. PGC7 binds H3K9me2 in the maternal pronucleus and at certain paternally-imprinted loci (H19, Rasgrf1) in the paternal pronucleus, thereby potentially regulating chromatin organization to interfere with Tet3 accessibility.Next, Nakamura et al.12 tested by immunocytochemistry whether PGC7 in zygotes also required H3K9me2. It is known that H3K9me2 staining is concentrated in the maternal but not the paternal pronucleus13. Using conventional staining methods in which the cells are first fixed and then permeabilized to allow antibodies to enter the cell, the authors observed in their earlier study that PGC7 bound to both pronuclei11. Remarkably, by simply reversing the order of the fixation and permeabilization steps – permeabilizing first to allow the loss of loosely bound proteins by dissociation, then fixing and staining – they found that PGC7 associated much more tightly with the maternal pronucleus that bears H3K9me2 mark. Injection of mRNA encoding Jhdm2a (an H3K9me1/ me2-specific demethylase) into zygotes eliminated staining for H3K9me2 as well as PGC7 in the maternal pronucleus, and concomitantly caused loss of 5mC and acquisition of 5hmC. Taken together, these data strongly suggested that PGC7 was selectively recruited to the maternal pronucleus through binding H3K9me2, and that this binding protected zygotic maternal DNA from oxidation of 5mC to 5hmC and beyond (Figure 1).These findings led Nakamura et al. to investigate how PGC7 controls Tet3 activity in zygotes. They showed (in cells that were permeabilized before fixation and immunocytochemistry) that Tet3 was tightly associated only with the paternal pronucleus in WT zygotes, but was present in both pronuclei in PGC7-deficient zygotes. When PGC7 was prevented from binding to the maternal pronucleus by injection of Jhdm2a mRNA, Tet3 became tightly associated with both pronuclei. In other words, loss of PGC7 or loss of H3K9me2 that recruits PGC7 had the same effect – eliminating selective association of Tet3 with the paternal genome. The implication is that PGC7 – which preferentially binds the maternal genome – somehow promotes the selective binding of Tet3 to the paternal genome, thus permitting rapid 5mC oxidation in paternal but not maternal DNA (Figure 1).PGC7 is a small protein (150 amino acids (aa) in the mouse, 159 aa in humans) whose sequence is only moderately conserved. Nakamura et al.12 showed that the binding of PGC7 to H3K9me2 required the N-terminal half of PGC7, whereas its ability to exclude Tet3 from the maternal pronucleus required the C-terminal half. It is unclear how Tet3 exclusion is mediated. One possibility is that the C-terminal region of PGC7 sterically excludes Tet3 from binding, either to DNA or to a chromatin mark; another is that the C-terminal region of PGC7 is capable of altering chromatin configuration to prevent the binding of Tet3 to chromatin. In support of the latter hypothesis, the rate with which micrococcal nuclease (MNase) digested high-molecular weight chromatin was significantly slower in WT ES cells in which PGC7 was present, compared to PGC7−/− and G9a−/− ES cells in which PGC7 was either absent or not recruited to DNA because of the loss of H3K9me2 mark. In contrast, DNA methylation did not alter the chromatin association of PGC7 or its ability to protect high-molecular weight chromatin from MNase digestion, as shown by using Dnmt1−/−Dnmt3a−/−Dnmt3b−/− triple knockout ES cells that completely lack DNA methylation.How does PGC7 protect paternally-imprinted loci from Tet3-mediated 5mC oxidation? Although the haploid sperm genome is mostly packaged with protamine, a genome-wide analysis revealed that 4% of the genome of mature human sperm bears nucleosomes located at developmental and imprinted genes14. Nakamura et al.12 found that among paternally-imprinted differentially methylated regions (DMRs), the H19 and Rasgrf1 DMRs contained H3K9me2 whereas the Meg3 DMR did not, consistent with their previous finding that in PGC7-deficient zygotes, the H19 and Rasgrf1 DMRs were hypomethylated but the Meg3 DMR was unaffected11. Therefore, PGC7 may be recruited to paternally-imprinted loci through H3K9me2-containing nucleosomes that pre-exist in the sperm haploid genome upon fertilization. Alternatively, Nakamura et al. point out that protamine in the sperm is replaced soon after fertilization by the histone H3.3 variant, which in somatic cells does not bear H3K9me2 mark.In conclusion, Nakamura et al.12 demonstrate unambiguously that PGC7 specifically binds to H3K9me2 in the maternal genome in zygotes, where its global occupancy excludes Tet3 and inhibits Tet3-mediated 5mC oxidation. This novel finding provides new insights into the global alterations of DNA methylation status that occur during early embryogenesis. Follow-up questions abound. First, can PGC7 protect other methylated loci such as transposable elements and the X-chromosome? It would be interesting to assess H3K9me2 at these loci. Second, how does the N-terminal half of PGC7 recognize H3K9me2? Structural characterization of this interaction may elucidate a novel epigenetic “reader” domain specific for H3K9me2. Third, PGC7 is a marker for cells of the inner cell mass, and is co-expressed with Tet1 and Tet2 rather than Tet3 in ESCs15. Does PGC7 also antagonize Tet1 and Tet2 and protect imprinted loci in ESCs? Fourth, how does PGC7 inhibit the access of Tet3 to chromatin? Considering that PGC7 is small and is not equipped with known enzymatic domains, it is likely that PGC-interacting proteins, rather than PGC7 itself, function to regulate chromatin status. Fifth, how is Tet3 recruited to paternal chromatin – are there specific histone or other epigenetic marks that facilitate Tet3 recruitment? Finally, while technically challenging, it seems imperative to identify the target genes of PGC7 and Tet3, by profiling the genomic location of 5hmC and other 5mC oxidation products in the paternal and maternal genomes of zygotes from WT, Tet3-deficient and PGC7-deficient mice. 相似文献
16.
17.
Liu Tianrui Yang Jian Liu Shuang Zhao Yuyang Zhou Junhui Jin Yan Huang Luqi Yuan Yuan 《Molecular biology reports》2020,47(12):9301-9311
Molecular Biology Reports - Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with chlorogenic acid, flavonoid and iridoid. The... 相似文献
18.
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions. 相似文献
19.
《Epigenetics》2013,8(6):366-369
Post-translational modifications of histones play key roles in the regulation of gene expression and chromatin structure in eukaryotes. Methylation of histone 3 on lysine 27 (H3K27) is one of the most common and well-studied histone post-translational modifications. The vast majority of research on this histone residue, however, has focused on the trimethylated form (H3K27me3). Despite occurring at higher levels than H3K27me3 in animals and plants, the monomethylated form of H3K27 (H3K27me1) remains relatively poorly characterized. The absence of information concerning H3K27me1 is due in large part to the fact that the enzymes catalyzing this epigenetic mark were only recently identified. In this article, we highlight new findings concerning H3K27me1, including the identification of two plant-specific H3K27 monomethyltransferases that are required for gene silencing and heterochromatin condensation. We also discuss the emerging similarities and differences in H3K27 methylation in plant and animal systems. 相似文献
20.
Min Young Lee Junghee Lee Seung Jae Hyeon Hyesun Cho Yu Jin Hwang Jong‐Yeon Shin Ann C. McKee Neil W. Kowall Jong‐Il Kim Thor D. Stein Daehee Hwang Hoon Ryu 《Aging cell》2020,19(6)
The pathogenesis of Alzheimer's disease (AD) and the commonest cause of dementia in the elderly remain incompletely understood. Recently, epigenetic modifications have been shown to play a potential role in neurodegeneration, but the specific involvement of epigenetic signatures landscaped by heterochromatin has not been studied in AD. Herein, we discovered that H3K9me3‐mediated heterochromatin condensation is elevated in the cortex of sporadic AD postmortem brains. In order to identify which epigenomes are modulated by heterochromatin, we performed H3K9me3‐chromatin immunoprecipitation (ChIP)‐sequencing and mRNA‐sequencing on postmortem brains from normal subjects and AD patients. The integrated analyses of genome‐wide ChIP‐ and mRNA‐sequencing data identified epigenomes that were highly occupied by H3K9me3 and inversely correlated with their mRNA expression levels in AD. Biological network analysis further revealed H3K9me3‐landscaped epigenomes to be mainly involved in synaptic transmission, neuronal differentiation, and cell motility. Together, our data show that the abnormal heterochromatin remodeling by H3K9me3 leads to down‐regulation of synaptic function‐related genes, suggesting that the epigenetic alteration by H3K9me3 is associated with the synaptic pathology of sporadic AD. 相似文献