共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochemically detectable beta-galactosidase (beta-gal) at pH 6.0 has been reported to increase during the replicative senescence of fibroblast cultures and has been used widely as a marker of cellular senescence in vivo and in vitro. In this study, we have characterized changes in senescence-associated (SA) beta-gal staining in early and late passage cultures, cultures established from donors of different ages, virally immortalized cells, and tissue slices obtained from donors of different ages. The effects of different culture conditions were also examined. While we confirm the previous report that SA beta-gal staining increased in low-density cultures of proliferatively senescent cells, we were unable to demonstrate that it is a specific marker for aging in vitro. Cultures established from donors of different ages stained for SA beta-gal activity as a function of in vitro replicative age, not donor age. We also failed to observe any differences in SA beta-gal staining in skin cells in situ as a marker of aging in vivo. The level of cytochemically detectable SA beta-gal was elevated in confluent nontransformed fibroblast cultures, in immortal fibroblast cultures that had reached a high cell density, and in low-density, young, normal cultures oxidatively challenged by treatment with H2O2. Although we clearly demonstrate that SA beta-gal staining in cells is increased under a variety of different conditions, the interpretation of increased staining remains unclear, as does the question of whether the same mechanisms are responsible for the increased SA beta-gal staining observed in senescent cells and changes observed in cells under other conditions. 相似文献
2.
For many years, zinc salts have been used both topically and orally to treat minor burns and abrasions as well as to enhance
wound repair in man and animals. In this study we describe the protective effects of zinc against UV-induced genotoxicity
in vitro and against sunburn cell formation in mouse skin in vivo. Cultured skin cells from neonatal mice showed a dramatic
increase in the number of micronuclei as a result of UVA and UVB irradiation. Inclusion of zinc at 5 μg/mL in the medium significantly
reduced the frequency of micronuclei and of micronucleated cells. In hairless mice, topical application of zinc chloride for
5 consecutive days or a single application 2 h prior to UV exposure reduced the number of sunburn cells in the epidermis as
did application of zinc 1 h after exposure. Application 2 h after irradiation also tended to have a protective effect, although
there was a large variation between animals. It is proposed that an influx of zinc can protect epidermal cells against some
of the more delayed effects of UV-induced damage. 相似文献
3.
4.
5.
6.
Christopher D. Gregory John D. Pound 《Apoptosis : an international journal on programmed cell death》2010,15(9):1029-1049
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms—“recognition, response and removal”—that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices—Dead-Cert® Nanoparticles—can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro. 相似文献
7.
Duncan H. F. Mak Siu-Po Ip Pui-Chun Li Michel K. T. Poon Kam-Ming Ko 《Molecular and cellular biochemistry》1996,165(2):161-165
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations
ALT
alanine aminotransferase
- CCl4
carbon tetrachloride
- Fe3+
ferric chloride
- MDA
malondialdehyde
- Sch B
Schisandrin B
- TBA
2-thiobarbituric acid
- TBARS
thiobarbituric acid reactive substances
- -TOC
dl--tocopherol 相似文献
8.
Xiao-Hai Tang Ping Xie Yi Ding Liang-Yin Chu Jing-Ping Hou Jin-Liang Yang Xin Song Yong-Mei Xie 《Bioorganic & medicinal chemistry》2010,18(4):1599-1609
Adriamycin (ADM) has been widely used in the treatment of many types of solid malignant tumor. However, cardiotoxicity, multidrug resistance and a short half-life in vivo are significant problems that limit its clinical application. To resolve these problems, a novel pectin–adriamycin conjugate (PAC) was synthesized by attaching ADM to low-methoxylated pectin via an amide linkage. The ADM content and weight-average molecular weight (Mw) of PAC were greater than 25% (w/w) and 50,360 g/mol, respectively. PAC was highly stable in plasma, but 33.2% of ADM was released from PAC after incubation for 30 h with lysosomes derived from rat liver. PAC was distributed uniformly in the cytoplasm of most A549 cells and accumulated in the nucleus of a few A549 cells after incubation for 30 h. At concentrations equivalent to 0.125–1.000 μg of ADM/mL, PAC did not inhibit the growth of either A594 or B16 cells to the same extent as free ADM or a mixture of ADM and pectin. Interestingly, at all concentrations, PAC inhibited the growth of 2780cp cells in vitro significantly more effectively than ADM or the mixture of ADM and pectin. The anticancer effect of PAC in vivo was evaluated with C57BL/6 mice bearing pulmonary metastases of B16 cells. Compared with ADM and the mixture of ADM and pectin, PAC suppressed tumor growth significantly and prolonged the mean survival time of the B16-inoculated mice. PAC has great potential for development as a tumor targeting polymer-drug. 相似文献
9.
The time evolution of the size distributions of (fully branched and debranched) starch molecules during in vivo and in vitro digestion was analyzed using size exclusion chromatography (SEC) and compared. In vivo digesta were collected from the small intestine of pigs fed with raw normal maize starch; in vitro digestion was carried out on the same diet fed to the pigs using a method simulating digestion in the mouth, stomach, and small intestine. A qualitative difference was observed between the in vitro and the in vivo digestion. The former showed a degradation of starch molecules to a more uniform size, whereas the in vivo digestion preserved the size distribution of native starch before producing a multimodal distribution, the heterogeneous nature of which current in vitro methods do not reproduce. The use of in vitro digestion to infer in vivo digestion patterns and, hence, potential nutrition benefits need to take account of this phenomenon. 相似文献
10.
Docetaxel is one of the most effective anticancer drugs. However, the current formulation of docetaxel contains Tween 80 and ethanol as the solvent, which can cause severe side effects. Consequently, the development of new type of formulation of docetaxel with high efficiency and low side effects is a very important issue. In this study, we explored the covalent linking of docetaxel and albumin via one organic linker. 6-Maleimidocaproic acid was applied to link the C2′ hydroxyl group of docetaxel with the cysteine-34 of albumin to obtain 1:1 docetaxel–albumin conjugate. The synthesized conjugate can control the release of docetaxel in the bovine serum. Furthermore, in vitro cell cytotoxicity experiments indicated that the docetaxel–albumin conjugate have high activities for human prostate cancer cell line PC3 and human breast cancer cell line MCF-7. The present study provides a valuable strategy for further development of a new type of docetaxel–albumin prodrug. 相似文献
11.
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the zeta potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 microm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. 相似文献
12.
Chromosomal analyses in lymphocytes of 28 patients with multiple sclerosis were carried out before, during and after Azathioprine (Aza) therapy. Only a higher incidence of gaps was found in treated patients than in a group of healthy persons but not in comparison with untreated patients. Similarly, no significant clastogenic effect was observed in vitro after short-term and long-term treatment of unstimulated and stimulated lymphocytes with concentrations of 1--100 microgram Aza per ml. Treatment of cultures with 0.0001--4.0 microgram/ml did not yield increased SCE frequencies. The absence of any significant clastogenic effect of therapeutic doses of Aza on human somatic cells is deduced from an evaluation of previously published data and from the present results. 相似文献
13.
Gilbert P Allison DG McBain AJ 《Symposium series (Society for Applied Microbiology)》2002,(31):98S-110S
Microbial biofilm has become inexorably linked with man's failure to control them by antibiotic and biocide regimes that are effective against suspended bacteria. This failure relates to a localized concentration of biofilm bacteria, and their extracellular products (exopolymers and extracellular enzymes), that moderates the access of the treatment agent and starves the more deeply placed cells. Biofilms, therefore, typically present gradients of physiology and concentration for the imposed treatment agent, which enables the less susceptible clones to survive. Such clones might include efflux mutants in addition to genotypes with modifications in single gene products. Clonal expansion following subeffective treatment would, in the case of many antibiotics, lead to the emergence of a resistant population. This tends not to occur for biocidal treatments where the active agent exhibits multiple pharmacological activity towards a number of specific cellular targets. Whilst resistance development towards biocidal agents is highly unlikely, subeffective exposure will lead to the selection of less susceptible clones, modified either in efflux or in their most susceptible target. The latter might also confer resistance to antibiotics where the target is shared. Thus, recent reports have demonstrated that sublethal concentrations of the antibacterial and antifungal agent triclosan can select for resistant mutants in Escherichia coli and that this agent specifically targets the enzyme enoyl reductase that is involved in lipid biosynthesis. Triclosan may, therefore, select for mutants in a target that is shared with the anti-E. coli diazaborine compounds and the antituberculosis drug isoniazid. Although triclosan may be a uniquely specific biocide, sublethal concentrations of less specific antimicrobial agents may also select for mutations within their most sensitive targets, some of which might be common to therapeutic agents. Sublethal treatment with chemical antimicrobial agents has also been demonstrated to induce the expression of multidrug efflux pumps and efflux mutants. Whilst efflux does not confer protection against use concentrations of biocidal products it is sufficient to confer protection against therapeutic doses of many antibiotics. It has, therefore, been widely speculated that biocide misuse may have an insidious effect, contributing to the evolution and persistence of drug resistance within microbial communities. Whilst such notions are supported by laboratory studies that utilize pure cultures, recent evidence has strongly refuted such linkage within the general environment where complex, multispecies biofilms predominate and where biocidal products are routinely deployed. In such situations the competition, for nutrients and space, between community members of disparate sensitivities far outweighs any potential benefits bestowed by the changes in an individual's antimicrobial susceptibility. 相似文献
14.
《Harmful algae》2013
Acquired phototrophy, i.e. the use of chloroplasts from ingested prey, can be found among some species of dinoflagellates and ciliates. The best studied examples of this phenomenon in these groups are within the ciliate genus Mesodinium and the dinoflagellate genus Dinophysis, both ecologically important genera with a worldwide distribution. Mesodinium species differ considerably in their carbon metabolism. Some species rely almost exclusively on food uptake, while other species rely mostly on photosynthesis. In Mesodinium with acquired phototrophy, a number of prey organelles in addition to chloroplasts may be retained, and the host ciliate has considerable control over the acquired chloroplasts; Mesodinium rubrum is capable of dividing its acquired chloroplasts and can also photoacclimate. In Dinophysis spp., the contents of ciliate prey are sucked out, but only the chloroplasts are retained from the ingested prey. Some chloroplast house-keeping genes have been found in the nucleus of Dinophysis and some preliminary evidence suggests that Dinophysis may be capable for photoacclimation. Both genera have been claimed to take up inorganic nutrients, including NO3−, indicating that processes beyond photosynthesis have been acquired. M. rubrum seems to depend upon prey species within the Teleaulax/Plagioselmis/Geminigera clade of marine cryptophytes. Up until now, Dinophysis species have only been maintained cultured on M. rubrum as food, but other ciliates may also be ingested. Dinophysis spp. and M. rubrum are obligate mixotrophs, depending upon both prey and light for sustained growth. However, while M. rubrum only needs to ingest 1–2% of its carbon demand per day to attain maximum growth, Dinophysis spp. need to obtain about half of their carbon demand from ingestion for maximum growth. Both Mesodinium and Dinophysis spp. can survive for months in the light without food. The potential role for modeling in exploring the complex balance of phototrophy and phago-heterotrophy, and its ecological implications for the mixotroph and their prey, is discussed. 相似文献
15.
《Mutation Research/Genetic Toxicology》1981,88(1):61-72
Chromosomal analyses in lymphocytes of 28 patients with multiple sclerosis were carried out before, during and after Azathioprine (Aza) therapy. Only a higher incidence of gaps was found in treated patients than in a group of healthy persons but not in comparison with untreated patients. Similarly, no significant clastogenic effect was observed in vitro after short-term and long-term treatment of unstimulated and stimulated lymphocytes with concentrations of 1–100 μg Aza per ml. Treatment of cultures with 0.0001–4.0 μg/ml did not yield increased SCE frequencies. The absence of any significant clastogenic effect of therapeutic doses of Aza on human somatic cells is deduced from an evaluation of previously published data and from the present results. 相似文献
16.
17.
Albumin, the major circulating protein in blood, can undergo increased glycation in diabetes. One of the main properties of this plasma protein is its strong affinity to bind many therapeutic drugs, including warfarin and ketoprofen. In this study, we investigated whether or not there were any significant changes related to in vitro or in vivo glycation in the structural properties and the binding of human albumin to both therapeutic drugs. Structural parameters, including redox state and ketoamine contents of in vitro and in vivo glycated purified albumins, were investigated in parallel with their affinity for warfarin and ketoprofen. High-performance liquid chromatography was used to determine the free drug concentrations and dissociation constants according to the Scatchard method. An alternative method based on fluorescence spectroscopy was also used to assess drug-binding properties. Oxidation and glycation levels were found to be enhanced in albumin purified from diabetic patients or glycated with glucose or methylglyoxal, after determination of their ketoamine, free thiol, amino group and carbonyl contents. In parallel, significant impairments in the binding affinity of in vitro and in vivo glycated albumin, as indicated by the higher dissociation constant values and confirmed by higher free drug fractions, were observed. To a lesser extent, this alteration also significantly affected diabetic albumin affinity, indicated by a lower static quenching in fluorescence spectroscopy. This work provides useful information supporting in vivo diabetic albumin could be the best model of glycation for monitoring diabetic physiopathology and should be valuable to know if glycation of albumin could contribute to variability in drugs response during diabetes. 相似文献
18.
An improved cultivation system for Arabidopsis thaliana was developed, allowing advanced biochemical studies in vitro and in vivo of this important model plant. Highly functional Arabidopsis thylakoids were isolated and used to study both basic and regulatory photosynthetic functions with the aim to create a platform for the characterization of mutants deficient in auxiliary proteins. Light-induced proteolytic degradation of the D1 protein could be followed and shown to be a subsequent event to photoinactivation of electron transport. The phosphorylation and dephosphorylation of thylakoid proteins resembled that seen in spinach leaves although phospho-CP43 revealed an unusual regulatory behavior. 相似文献
19.