首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in men and in women. The impact of the new pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide (MM-129) was evaluated against human colon cancer in vitro and in zebrafish xenografts. Our results show that this new synthesised compound effectively inhibits cell survival in BTK-dependent mechanism. Its effectiveness is much higher at a relatively low concentration as compared with the standard chemotherapy used for CRC, i.e. 5-fluorouracil (5-FU). Flow cytometry analysis after annexin V-FITC and propidium iodide staining revealed that apoptosis was the main response of CRC cells to MM-129 treatment. We also found that MM-129 effectively inhibits tumour development in zebrafish embryo xenograft model, where it showed a markedly synergistic anticancer effect when used in combination with 5-FU. The above results suggest that this novel heterofused 1,2,4-triazine derivative may be a promising candidate for further evaluation as chemotherapeutic agent against CRC.  相似文献   

2.
BackgroundColon cancer treatments include surgery, radiotherapy, and chemotherapy. Chemotherapy using 5-fluorouracil (5-FU) has been widely applied to treat colorectal cancer (CRC). However, it is important to explore the use of chemotherapy drugs in combination with other agents to decrease severe adverse effects.PurposeThis study aimed to investigate the effects of curcumin in combination with 5-FU on the proliferation, migration, and apoptosis of CRC SW620 cell line both in vitro and in vivo.MethodsFlow cytometry was used to study the effect of curcumin on chemotherapy-induced apoptosis in CRC cells. The mechanism of curcumin's enhanced antitumor effect in vivo was investigated using gene knockdown, TUNEL, western blot, qRT-PCR and immunohistochemistry.ResultsThe results showed a synergistic effect of the two compounds on CRC cells. Considerable reduction in the proliferation and migration of SW620 cells was observed in the combination treatment group. Significantly increased apoptosis rate extended the survival of immunodeficient mice in the combination group as compared to that of the 5-FU group (p < 0.05). The results showed that curcumin significantly inhibited pERK signaling and downregulated L1 expression in SW620 cells.ConclusionsWe conclude that curcumin promotes chemosensitivity of CRC cells to 5-FU by downregulating L1 expression. Our findings provide experimental evidence for the synergism between curcumin and 5-FU, which can be utilized in clinical applications for reducing the toxicity and adverse effects of 5-FU.  相似文献   

3.
Many studies have shown that natural dietary agents, in combination with chemical agents, can improve the therapeutic response of cancers to chemotherapy and reduce the associated side-effects. In the present study, we investigated the therapeutic potential and mechanisms of anticancer effects for the combination of 5-fluorouracil (5-FU) and resveratrol (Res). In these studies, we employed the cancer cell lines TE-1 and A431 and an animal model of skin cancer. The presented results provide the first evidence that Res can enhance the anti-tumor potency of 5-FU by inducing S-phase arrest. The combination of Res and 5-FU demonstrates synergistic efficacy, causing tumor regression in a two-stage model of mouse skin carcinogenesis induced by DMBA and TPA. There was clear evidence of Res augmenting the growth inhibitory effect of 5-FU on the TE-1 and A431 cancer cells in vitro. In the in vivo studies, the tumor regression rate in the combination group increased significantly after four weeks of treatment (P < 0.01). The combination of 5-FU and Res significantly increased the percentage of apoptotic cells and the level of activated caspase-3, cleaved PARP and p53 proteins as well as increased the Bax/Bcl-2 ratio. In conclusion, the 5-FU/Res combination enabled a more effective inhibition of cell growth and the induction of apoptosis in cancer cells than 5-FU alone. The results of this study suggest that chemotherapy using natural dietary agents with chemical agents represents a superior cancer treatment option.  相似文献   

4.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

5.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

6.
Colorectal carcinomas (CRCs) with P53 mutations have been shown to be resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising therapeutic target for drug-resistant tumors. In the present study, we tested the effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in combination with 5-FU in the HCT15 p53 mutant apoptosis-resistant CRC cell line. The involvement of UA in autophagy and its in vivo efficacy were evaluated.Our data show that UA induces apoptosis independent of caspases in HCT15 cells and enhances 5-FU effects associated with an activation of c-jun N-terminal kinase (JNK). In this cell line, where this compound has a more pronounced effect on the induction of cell death compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell death induced by UA. UA also modulated autophagy by inducing the accumulation of LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution of autophagy on JNK-dependent induction of cell death by UA. By using nude mice xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing tumor growth rate.In conclusion, this study shows UA's anticancer potential both in vitro and in vivo. Induction of cell death and modulation of autophagy in CRC-resistant cells were shown to involve JNK signaling.  相似文献   

7.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

8.
Carcinoembryonic antigen (CEA) expression has been shown to protect cancer cell lines from apoptosis and anoikis. The aim of this study was to further elucidate the role of CEA expression on resistance to anticancer drugs in human colorectal cancer (CRC). We transfected CEA negative CRC cell line SW742 as well as CHO cells to overexpress CEA and their chemoresistance were assessed by MTT assay. In comparison to the parental cell lines, transfected cells had significantly increased resistance to 5-fluorouracil (5-FU). The results also showed a direct correlation between the amount of cellular CEA protein and 5-FU resistance in CEA expressing cells. We found no significant difference in sensitivity to cisplatin and methotrexate between CEA-transfected cells and their counter parental cells. We also compared the association between CEA expression and chemoresistance of 4 CRC cell lines which differed in the levels of CEA production. The CEA expression levels in monolayer cultures of these cell lines did not correlate with the 5-FU resistance. However, 5-FU treatment resulted in the selection of sub-populations of resistant cells that displayed increased CEA expression levels by increasing drug concentration. We analyzed the effect of 5-FU in a 3D multicellular culture generated from the two CRC cell lines, LS180 and HT29/219. Compared with monolayer culture, CEA production and 5-FU resistance in both cell lines were stimulated by 3D growth. In comparison to the 3D spheroids of parental CHO, we observed a significantly elevated 5-FU resistance in 3D culture of the CEA-expressing CHO transfectants. Our findings suggest that the CEA level may be a suitable biomarker for predicting tumor response to 5-FU-based chemotherapy in CRC.  相似文献   

9.
10.
The underlying mechanism of colorectal cells developing into cancer cells has been extensively investigated, yet is still not fully delineated, resulting in the treatment of advanced colorectal cancer (CRC) remains regrettably an unmet need. Zinc Finger Protein 746/Parkin-interacting substrate (ZNF746/PARIS) has previously been identified to play a fundamental role on bladder cancer cell proliferation and metastasis that were effectively inhibited by melatonin (Mel). In this study, we utilized ex vivo/in vivo studies to verify whether the ZNF746 signaling was also crucial in CRC growth/invasion/migration. Tissue-bank specimens showed that the protein expression of ZNF746 was significantly increased in CRC than that of healthy colorectal tissues (p < 0.001). Additionally, in vitro study demonstrated that excessive expression of ZNF746 significantly inhibited mitochondrial activity via (1) interfering with the dynamic balance of mitochondrial fusion/fission and (2) inhibiting the protein expression of MFN1/MFN2/PGC1a (all p < 0.001). Furthermore, we identified that inhibition of ZNF746 protein expression significantly reduced the resistance of CRC cell lines to the anticancer drug of 5-FU (p < 0.001), whereas overexpression of ZNF746 significantly augmented resistance of CRC cells to 5-FU (all p < 0.001). Finally, using the cell culture method, we found that combined Mel and 5-FU was superior to merely one on promoting the CRC cell apoptosis (p < 0.001). Our results confirmed that ZNF746 signaling played a cardinal role of CRC cell proliferation/survival and combined Mel and 5-FU treatment attenuated the resistance of CRC cells to the drug mainly through suppressing this signaling.  相似文献   

11.
The role of the calcium binding protein, Calbindin 2 (CALB2), in regulating the response of colorectal cancer (CRC) cells to 5-Fluorouracil (5-FU) was investigated. Real-time RT-PCR and Western blot analysis revealed that CALB2 mRNA and protein expression were down-regulated in p53 wild-type and p53 null isogenic HCT116 CRC cell lines following 48 h and 72 h 5-FU treatment. Moreover, 5-FU-induced apoptosis was significantly reduced in HCT116 and LS174T CRC cell lines in which CALB2 expression had been silenced. Further investigation revealed that CALB2 translocated to the mitochondria following 5-FU treatment and that 5-FU-induced loss of mitochondrial membrane potential (Δψ(m)) was abrogated in CALB2-silenced cells. Furthermore, CALB2 silencing decreased 5-FU-induced cytochrome c and smac release from the mitochondria and also decreased 5-FU-induced activation of caspases 9 and 3/7. Of note, co-silencing of XIAP overcame 5-FU resistance in CALB2-silenced cells. Collectively, these results suggest that following 5-FU treatment in CRC cell lines, CALB2 is involved in apoptosis induction through the intrinsic mitochondrial pathway. This indicates that CALB2 may be an important mediator of 5-FU-induced cell death. Moreover, down-regulation of CALB2 in response to 5-FU may represent an intrinsic mechanism of resistance to this anti-cancer drug.  相似文献   

12.
13.
Recent studies hint that Ginsenoside is involved in cancer prevention and treatment. In this study, we investigated the effect of Ginsenoside Rh2 on drug resistance in human colorectal carcinoma (CRC) cells and its mechanism. The resistance reversion effect of Ginsenoside Rh2 in CRC cells was analyzed using CCK-8 assay. After treating with Ginsenoside Rh2, the cell cycle distribution and cellular apoptosis were analyzed by flow cytometry, cell migration was determined by transwell migration assay, the expression of drug-resistance genes and proteins were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Ginsenoside Rh2 could enhance the cytotoxicity of 5-FU in drug-resistant CRC cells (LoVo/5-FU and HCT-8/5-FU). Treatment with Ginsenoside Rh2 could result in an increase of cell numbers in G0/G1 phase accompanied with a decrease in S-phase, and induced cellular apoptosis in drug-resistant CRC cells. In addition, the migration process and EMT process of drug-resistant CRC cells were suppressed by treatment of Ginsenoside Rh2. Compared to control group, expression of drug-resistance genes, such as MRP1, MDR1, LRP and GST, were negatively correlated to Ginsenoside Rh2. All these results indicated that Ginsenoside Rh2 could effectively reverse drug resistance in human colorectal carcinoma cell and its mechanism involved the prevention of cellular proliferation and migration, the promotion of cellular apoptosis and the alteration of drug-resistance genes, which suggested that Ginsenoside Rh2 may act as a promising candidate for drug resistance in human colorectal carcinoma chemotherapy.  相似文献   

14.
In this study, we investigated the combined treatment of 5-fluorouracil (5-FU) and Anatolian propolis extract (PE) on colorectal cancer (CRC)using in vitro and in vivo studies. We exposed luciferase-transfected (Lovo-Luc CRC) cells and healthy colon cells (CCD-18Co) to varying concentrations of 5-FU and PE to assess their genotoxic, apoptotic, and cytotoxic effects, as well as their intracellular reactive oxygen species (iROS) levels. We also developed a xenograft model in nude mice and evaluated the anti-tumor effects of PE and 5-FU using various methods. Our findings showed that the combination of PE and 5-FU had selectivity against cancer cells, particularly at higher doses, and enhanced the anti-tumor effectiveness of 5-FU against colon CRC. The results suggest that PE can reduce side effects and increase the effectiveness of 5-FU through iROS generation in a dose-dependent manner.  相似文献   

15.
Although the survival rate of patients with cancer have increased due to the use of current chemotherapeutic agents, adverse effects of cancer therapy remain a concern. The reversal of drug resistance, reduction in harmful side effects and accelerated increase in efficiency have often been addressed in the development of combination therapeutics. Tazemetostat (EPZ-6438), a histone methyltransferase EZH2 selective inhibitor, was approved by the FDA for the treatment of advanced epithelioid sarcoma. However, the effect of tazemetostat on colorectal cancer (CRC) and 5-FU sensitivity remains unclear. In this study, the enhancement of tazemetostat on 5-FU sensitivity was examined in CRC cells. Our findings demonstrated that tazemetostat combined with 5-FU exhibits synergistic antitumor function in vitro and in vivo in CRC cells. In addition, tazemetostat promotes PUMA induction through the ROS/ER stress/CHOP axis. PUMA depletion attenuates the antitumor effect of the combination therapy. Therefore, tazemetostat may be a novel treatment to improve the sensitivity of tumors to 5-FU in CRC therapy. In conclusion, the combination of 5-FU and tazemetostat shows high therapeutic possibility with reduced unfavorable effects.Subject terms: Chemotherapy, Colon cancer  相似文献   

16.
17.
BackgroundAlthough vitamin D (VD) is chemoprotective and enhances 5-fluorouracil (5-FU) cytotoxicity against colorectal cancer (CRC), little is known about its potential calcium (Ca2+)-mediated anti-tumorigenic actions. Therefore, this study compared between VD and its non-calcaemic analogue, Paricalcitol (Pcal), ± 5-FU in relation to chemoprevention and Ca2+-mediated apoptosis in vivo and in vitro.MethodsSeventy male mice were distributed to: negative controls, positive controls (PC), VD, Pcal, 5-FU, VD + 5-FU and Pcal+5-FU groups. All groups, except negative, received two consecutive azoxymethane (AOM)-injections (10 mg/Kg/week) for CRC induction. VD3 (1000 IU/kg; three times/week) and Pcal (1.25 μg/kg; three times/week) injections started week-16 post-AOM and for 10 weeks. Three successive 5-FU cycles began at week-21 (50 mg/Kg/week). Similar protocols with VD3, Pcal and/or 5-FU were applied in the HT29 colon cancer cells.ResultsThe PC group had abundant malignant tumours, markedly elevated proliferation markers (survivin/CCND1) and declines in cyclin-dependent kinase-inhibitor-1A, pro-apoptotic molecules (p53/BAX/cytochrome_C/caspase-3), tissue Ca2+ concentrations and Ca2+-dependent proteins (CaSR/CAM/CAMKIIA). All monotherapies equally reduced tumour numbers and proliferation markers whilst promoting the anti-tumorigenic molecules. VD and/or 5-FU, but not Pcal monotherapy, enhanced Ca2+ levels and Ca2+-related molecules (CaSR/CAM/CAMKIIA/BAX/cytochrome_C) in vivo and in vitro. However, VD + 5-FU co-therapy showed the lowest tumour numbers, the highest cell numbers in sub-G1 phase of cell cycle, alongside the most effective modulations of oncogenes, tumour suppressors and Ca2+-related molecules at the gene and protein levels in vivo and in vitro.ConclusionsVD3 was superior than Paricalcitol in potentiating 5-FU cytotoxicity, possibly by upregulating several Ca2+-related molecules involved in tumour suppression.  相似文献   

18.
The aim of this study was to explore the molecular mechanism of lncRNA POU6F2-AS2 in proliferation and drug resistance of colon cancer. Total paired 70 colon cancer and adjacent normal tissues were collected from colon cancer patients. Colon cancer and normal colonic epithelial cells were purchased. POU6F2-AS2 was up- or down-expressed by vectors. LC50 of all cell lines before and after transfection with these plasmids was detected. qRT-PCR was used to detect the expression of POU6F2-AS2, miR-377 and BRD4 before or after transfection. In situ hybridization was also undertaken to detect the level of POU6F2-AS2. Different concentrations of 5-Fu (0, 1, 2.5, 5, 10, 20, 40 and 80 μg/mL) were used for 5-FU insensitivity assay. CCK-8 and crystal violet staining assay were used for detecting cell proliferation, and flow cytometry was used for identifying cell cycle distribution and apoptosis. In order to detect the fragmented DNA in apoptotic cells, TUNEL assay was used. RNA pull-down assay and luciferase reporter assay were used to verify the binding site. Rescue assay confirmed the subtractive effect of miR-377 inhibitors. POU6F2-AS2 was highly expressed in colon cancer, which was associated with clinical pathology. Up-regulated POU6F2-AS2 promoted cell proliferation and cell cycle of colon cancer cells. Overexpression of POU6F2-AS2 inhibited the expression of miR-377 and then up-regulated the expression of BRD4. Up-regulated BRD4 ultimately promoted cell proliferation and cell survival Down-regulated POU6F2-AS2 showed enhanced sensitivity of 5-FU. POU6F2-AS2 promoted cell proliferation and drug resistance in colon cancer by regulating miR-377/BRD4 gene.  相似文献   

19.
DNA methylation is an epigenetic mechanism establishing long-term gene silencing during development and cell commitment, which is maintained in subsequent cell generations. Aberrant DNA methylation is found at gene promoters in most cancers and can lead to silencing of tumor suppressor genes. The DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-CdR) is able to reactivate genes silenced by DNA methylation and has been shown to be a very potent epigenetic drug in several hematological malignancies. In this report, we demonstrate that 5-aza-CdR exhibits high antineoplastic activity against anaplastic large cell lymphoma (ALCL), a rare CD30 positive non-Hodgkin lymphoma of T-cell origin. Low dose treatment of ALCL cell lines and xenografted tumors causes apoptosis and cell cycle arrest in vitro and in vivo. This is also reflected in genome-wide expression analyses, where genes related to apoptosis and cell death are amongst the most affected targets of 5-aza-CdR. Furthermore, we observed demethylation and re-expression of p16INK4A after drug administration and senescence associated β-galactosidase activity. Thus, our data provide evidence that 5-aza-CdR is highly efficient against ALCL and warrants further clinical evaluation for future therapeutic use.  相似文献   

20.
In diabetic patients complicated with colorectal cancer (CRC), metformin treatment was reported to have diverse correlation with CRC-specific mortality. In laboratory studies, metformin was reported to affect the survival of cancer stem cells (CSCs) in breast and pancreatic cancers and glioblastoma. Although cscs play a critical role in the resistance to 5-fluorouracil (5-FU) chemotherapy in CRC patients, the effect of metformin on cscs in CRC patients and the synergistic effect of metformin in combination with 5-FU on cscs are not reported. In the present study pathological examinations were performed in 86 CRC patients complicated with type 2 DM who had been divided into a metformin group and a non-metformin group. Comparisons regarding pathological type, incidence of metastasis, expression of CD133 and β-catenin were conducted between the two groups. We explored the synergistic effects of metformin in combination with 5-FU on the proliferation, cell cycle, apoptosis and the proportion of CD133+ cscs of SW620 human colorectal cancer cell lines. The results show that metformin treatment had reverse correlations with the proportion of patients with poorly differentiated adenocarcinoma, the proportion of CD133+ cscs in CRC patients with type 2 DM. Metformin enhanced the antiproliferative effects of 5-FU on CD133+ cscs in SW620 cells. These findings provide an important complement to previous study. Inhibition of the proliferation of CD133+ cscs may be a potential mechanism responsible for the association of metformin use with improved CRC outcomes in CRC patients with type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号