首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The innate immune response elicited by Helicobacter pylori in the human gastric mucosa involves a range of cellular signalling pathways, including those implicated in metabolism regulation. In this study, we analysed H. pylori-induced PI3K/Akt/mTOR signalling, which regulates glycolysis and protein synthesis and associates thereby with cellular energy- and nutrients-consuming processes such as growth and proliferation. The immunohistochemical analysis demonstrated that Akt kinase phosphorylation is abundant in gastric biopsies obtained from gastritis, gastric adenoma and adenocarcinoma patients. Infection with H. pylori led to the phosphorylation of Akt effectors mTOR and S6 in a type 4 secretion system (T4SS)-independent manner in AGS cells. We observed that the activation of these molecules was dependent on PI3K and the Src family tyrosine kinases. Furthermore, H. pylori induced the phosphorylation of 4E-BP1 and eIF4E and suppressed the phosphorylation of eEF2, which are important regulators of protein synthesis. Inhibition of PI3K and Akt kinase prevented the phosphorylation of 4E-BP1, suggesting that PI3K signalling is involved in the regulation of translation initiation during H. pylori infection. Metabolic labelling showed that infected cells had higher rates of [35S]methionine/cysteine incorporation, and this effect could be prevented using LY294002, an PI3K inhibitor. Thus, H. pylori activates PI3K/Akt signalling, mTOR, eIFs and protein translation, which might impact H. pylori-related gastric pathophysiology.  相似文献   

2.
3.
4.
Hypoxia is a common environmental stress that influences signaling pathways and cell function. Previous studies from our laboratory have identified significant differences in cellular responses to sustained or intermittent hypoxia with the latter proving more cytotoxic. We hypothesized that differences in susceptibility of neurons to intermittent (IH) and sustained hypoxia (SH) are mediated by altered Akt signaling. SH, but not IH, induced a significant increase in Akt activation in rat CA1 hippocampal region extracts compared with room air controls. Akt immunoprecipitations followed by proteomic analysis identified valosin-containing protein (VCP) as an Akt-binding protein. In addition, VCP expression and association with Akt was enhanced during SH, and this association was decreased upon phosphoinositide 3-kinase/Akt pathway blockade with LY294002. Active recombinant Akt phosphorylated recombinant VCP in vitro. Site-directed mutagenesis studies identified Ser352, Ser746, and Ser748 as Akt phosphorylation sites on VCP. In addition, rat CA1 hippocampal tissue exposed to SH exhibited an acidic pI shift of VCP. Protein phosphatase 2A treatment inhibited this acidic shift consistent with SH-induced phosphorylation of VCP in vivo. PC-12 cells transfected with active Akt, but not dominant negative Akt or vector, induced VCP expression and an acidic shift in VCP pI, which was inhibited by protein phosphatase 2A treatment. Furthermore, VCP association with ubiquitinated proteins was demonstrated in vector-transfected PC-12 cell lysates, whereas active Akt-transfected cells demonstrated a marked decrease in association of VCP with ubiquitinated proteins. We concluded that Akt phosphorylates VCP in vitro and in vivo, and VCP phosphorylation releases it from ubiquitinated substrate protein(s) possibly allowing ubiquitinated protein(s) to be degraded by the proteosome.  相似文献   

5.
Helicobacter pylori-induced inflammation significantly increases the risk of gastric cancer. To investigate the role of H. pylori infection in gastric epithelial cell carcinogenesis, flow cytometry was used to analyze the apoptosis of gastric epithelial cells infected by H. pylori. Next, LTQ MS mass spectrometry (MS) was applied to identify protein changes in gastric epithelial cells infected with H. pylori, and then bioinformatics was adopted to analyze the cellular localization and biological function of differential proteins. LTQ MS/MS successfully identified identified 22 differential proteins successfully, including 20 host-cell proteins and two H. pylori bacterial proteins. Also, human proteins were located in all areas of cells and involved in various cell biological functions. The oncogene proteins p53, p16, and C-erbB-2 proteins in H. pylori-infected RGM-1 cells were remarkably increased from the analysis by Western blot analysis. H. pylori infection of gastric epithelial cells leads to changes in various protein components in the cell, and enhances the expression of oncogene proteins, thereby increasing the possibility of possibility of carcinogenesis of H. pylori infection.  相似文献   

6.
H. pylori colonizes half of the world''s population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA) has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS) and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8) production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.  相似文献   

7.

Background

Gastric cancer is one of the most common and lethal malignant cancers worldwide, and numerous epidemiological studies have demonstrated that Helicobacter pylori (H. pylori) infection plays a key role in the development of gastric carcinomas. Our previous studies showed that aquaporin 3 (AQP3) is overexpressed in gastric carcinoma and promotes the migration and proliferation of human gastric carcinoma cells, suggesting that AQP3 may be a potentially important determinant of gastric carcinoma. However, the role of AQP3 in H. pylori carcinogenesis is unknown.

Methods

The AQP3 protein and H. pylori were detected in human gastric tissues by immunohistochemistry and modified Giemsa staining respectively. AQP3 knockdown was obtained by small interfering (si) RNA. Western blot assays and RT-PCR were used to evaluate the change of AQP3 in the human gastric cancer AGS and SGC7901 cell lines after co-culture with H. pylori. Sprague Dawley rats were orally inoculated with H. pylori to establish a rat model colonized by H. pylori.

Results

The present study found that AQP3 expression correlated with H. pylori infection status in gastric cancer tissues and corresponding normal mucosa, and H. pylori co-culture upregulated AQP3 expression in human gastric adenocarcinoma cells in vitro via the extracellular signal-regulated kinase signaling pathway. H. pylori infection also increased AQP3 expression in gastric mucosa colonized by H. pylori in a Sprague Dawley rat model.

Conclusions

These findings provide further information to understand the mechanism of H. pylori carcinogenesis and a potential strategy for the treatment of H. pylori-associated gastric carcinoma.  相似文献   

8.
9.
Strains of Helicobacter pylori that are positive for the oncoprotein CagA (cytotoxin-associated gene A) are associated with gastric cancer and might be related to the epithelial-to-mesenchymal transition (EMT). Casein kinase 2 (CK2) is a serine/threonine protein kinase that plays a major role in tumorigenesis through signaling pathways related to the EMT. However, the role played by the interaction between CagA and CK2 in gastric carcinogenesis is poorly understood. Although CK2α protein expression remained unchanged during H. pylori infection, we found that CK2α kinase activity was increased in gastric epithelial cells. We also found that the CK2β protein level decreased in H. pylori-infected gastric cancer cells in CagA-dependent manner and demonstrated that CagA induced CK2β degradation via HDM2 (human double minute 2; its murine equivalent is MDM2). We observed that CagA induced HDM2 protein phosphorylation and that p53 levels were decreased in H. pylori-infected gastric cancer cells. In addition, downregulation of CK2β induced AKT Ser473 phosphorylation and decreased the AKT Ser129 phosphorylation level in gastric cancer cells. We also found that the downregulation of CK2β triggered the upregulation of Snail levels in gastric cancer cells. Furthermore, our in vivo experiments and functional assays of migration and colony formation suggest that CK2β downregulation is a major factor responsible for the EMT in gastric cancer. Therefore, CK2 could be a key mediator of the EMT in H. pylori-infected gastric cancer and could serve as a molecular target for gastric cancer treatment.  相似文献   

10.
Helicobacter pylori infection of the stomach is associated with the development of gastritis, peptic ulcers, and gastric adenocarcinomas, but the mechanisms are unknown. MUC1 is aberrantly overexpressed by more than 50% of stomach cancers, but its role in carcinogenesis remains to be defined. The current studies were undertaken to identify the genetic mechanisms regulating H. pylori-dependent MUC1 expression by gastric epithelial cells. Treatment of AGS cells with H. pylori increased MUC1 mRNA and protein levels, and augmented MUC1 gene promoter activity, compared with untreated cells. H. pylori increased binding of STAT3 and MUC1 itself to the MUC1 gene promoter within a region containing a STAT3 binding site, and decreased CpG methylation of the MUC1 promoter proximal to the STAT3 binding site, compared with untreated cells. These results suggest that H. pylori upregulates MUC1 expression in gastric cancer cells through STAT3 and CpG hypomethylation.  相似文献   

11.
Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.  相似文献   

12.
Helicobacter pylori is a Gram-negative bacterium that infects the human gastric mucosa and causes various gastric diseases. H. pylori infection induces the production of inflammatory chemokine CCL20 in gastric mucosa and leads to gastric inflammation. Given that the IL-22/IL-22R axis plays a critical role in the regulation of homeostasis and inflammation of epithelial cells at barrier surfaces, we investigated the effect of IL-22 on CCL20 expression induced by H. pylori. We demonstrated that H. pylori infection of the gastric epithelia-derived AGS cells significantly induced CCL20 expression and the induction was inhibited by IL-22. Functional analysis of the CCL20 promoter revealed that the H. pylori-induced CCL20 expression required the activation of NF-κB, and that IL-22 inhibited the induction by attenuating NF-κB activation. Knockdown of endogenous STAT3 by either short interfering RNAs or a short hairpin RNA significantly reduced the inhibitory effect of IL-22. Furthermore, STAT3 phosphorylation elicited by IL-22 was crucial for the inhibition of H. pylori-induced CCL20 expression. Consistent with the in vitro data showing that IL-22 negatively regulated H. pylori-induced CCL20 expression in gastric epithelial cells, studies on the tissue sections from patients with H. pylori infection also revealed an inverse association of IL-22 expression and CCL20 expression in vivo. Together, our findings suggest that IL-22 plays a role in the control of overproduction of the inflammatory chemokine and thus may protect the gastric mucosa from inflammation-mediated damage.  相似文献   

13.
Jin S  Wu M  Cao H  Ying S  Hua J  Chen Y 《Helicobacter》2012,17(2):140-147
Background and Aims: Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP‐2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. Methods: We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two‐dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). Results: It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27kip1 protein. Conclusion: Our data suggested that hnRNPC1/2 upregulates p27kip1 expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA‐mediated pathogenesis.  相似文献   

14.
Infection with Helicobacter pylori leads to gastritis, peptic ulcers and gastric cancer. Moreover, when the gastric mucosa is exposed to H. pylori, gastric mucosal inflammatory cytokine interleukin‐8 (Il‐8) and reactive oxygen species increase. Anthocyanins have anti‐oxidative, antibacterial and anti‐inflammatory properties. However, the effect of anthocyanins in H. pylori‐infected cells is not yet clear. In this study, therefore, the effect of anthocyanins on H. pylori‐infected human gastric epithelial cells was examined. AGS cells were pretreated with anthocyanins for 24 hrs followed by H. pylori 26695 infection for up to 24 hrs. Cell viability and ROS production were examined by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide and 2′,7′–dichlorofluorescein diacetate assay, respectively. Western blot analyses and RT‐PCR were performed to assess gene and protein expression, respectively. IL‐8 secretion in AGS cells was measured by ELISA. It was found that anthocyanins decrease H. pylori‐induced ROS enhancement. Anthocyanins also inhibited phosphorylation of mitogen‐activated protein kinases, translocation of nuclear factor‐kappa B and Iκβα degradation. Furthermore anthocyanins inhibited H. pylori‐induced inducible nitric oxide synthases and cyclooxygenase‐2 mRNA expression and inhibited IL‐8 production by 45.8%. Based on the above findings, anthocyanins might have an anti‐inflammatory effect in H. pylori‐infected gastric epithelial cells.  相似文献   

15.
Bacterial infections typically elicit a strong Heat Shock Response (HSR) in host cells. However, the gastric pathogen Helicobacter pylori has the unique ability to repress this response, the mechanism of which has yet to be elucidated. This study sought to characterize the underlying mechanisms by which H. pylori down-modulates host HSP expression upon infection. Examination of isogenic mutant strains of H. pylori defective in components of the type IV secretion system (T4SS), identified the secretion substrate, CagA, to be essential for down-modulation of the HSPs HSPH1 (HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) upon infection of the AGS gastric adenocarcinoma cell line. Ectopic expression of CagA by transient transfection was insufficient to repress HSP expression in AGS or HEK293T cells, suggesting that additional H. pylori factors are required for HSP repression. RT-qPCR analysis of HSP gene expression in AGS cells infected with wild-type H. pylori or isogenic cagA-deletion mutant found no significant change to account for reduced HSP levels. In summary, this study identified CagA to be an essential bacterial factor for H. pylori-mediated suppression of host HSP expression. The novel finding that HSPH1 is down-modulated by H. pylori further highlights the unique ability of H. pylori to repress the HSR within host cells. Elucidation of the mechanism by which H. pylori achieves HSP repression may prove to be beneficial in the identification of novel mechanisms to inhibit the HSR pathway and provide further insight into the interactions between H. pylori and the host gastric epithelium.  相似文献   

16.
Mutations in p97/VCP cause the multisystem disease inclusion body myopathy, Paget disease of the bone and frontotemporal dementia (IBMPFD). p97/VCP is a member of the AAA+ (ATPase associated with a variety of activities) protein family and has been implicated in multiple cellular processes. One pathologic feature in IBMPFD is ubiquitinated inclusions, suggesting that mutations in p97/VCP may affect protein degradation. The present study shows that IBMPFD mutant expression increases ubiquitinated proteins and susceptibility to proteasome inhibition. Co-expression of an aggregate prone protein such as expanded polyglutamine in IBMPFD mutant cells results in an increase in aggregated protein that localizes to small inclusions instead of a single perinuclear aggresome. These small inclusions fail to co-localize with autophagic machinery. IBMPFD mutants avidly bind to these small inclusions and may not allow them to traffic to an aggresome. This is rescued by HDAC6, a p97/VCP-binding protein that facilitates the autophagic degradation of protein aggregates. Expression of HDAC6 improves aggresome formation and protects IBMPFD mutant cells from polyglutamine-induced cell death. Our study emphasizes the importance of protein aggregate trafficking to inclusion bodies in degenerative diseases and the therapeutic benefit of inclusion body formation.  相似文献   

17.
18.
19.
The Helicobacter pylori outer membrane proteins play an important role in pathogenesis; the outer inflammatory protein A (OipA) is one of these proteins which play the main role in the development of inflammation. In this study, purification of recombinant H. pylori OipA was performed by Ni–NTA affinity chromatography. Gastric carcinoma epithelial cells (AGS cell) were treated by different concentrations of recombinant OipA for various lengths of time and cell viability was evaluated by the viability assay. Statistical analysis showed that OipA had toxic effects on AGS cells in a concentration of 500 ng/ml after 24 and 48 h, and this toxic dose was 256 ng/ml after 72 h. OipA had direct toxic effects on gastric epithelial cells and the toxicity was observed to depend on time and dose of H. pylori exposure. Attachment of H. pylori to gastric epithelial cells is a key part in the pathogenesis and enables H. pylori to damage the epithelial cells with OipA.  相似文献   

20.
Galectin 3 (Gal-3) is upregulated in gastric epithelial cells as a host response to Helicobacter pylori infection. However, the significance of Gal-3 expression in H. pylori-infected cells is not well established. We analyzed Gal-3 intracellular expression, localization, and its effects in H. pylori-infected gastric epithelial cells. The predominantly nuclear confined Gal-3 was shown to be upregulated and exported out to the cytoplasm in H. pylori-infected AGS cells. The nuclear export was channeled through CRM-1 (exportin-1) protein. Interestingly, knock down of Gal-3 expression led to reduced NF-κB promoter activity and interleukin-8 (IL-8) secretion, suggesting its pro-inflammatory roles. Furthermore, Gal-3 was found to be pro-proliferative and anti-apoptotic in nature, as its knock down caused a reduction in cell proliferation and an increase in apoptosis, respectively. Taken together, our data suggest the expression and upregulation of Gal-3 as a critical endogenous event in H. pylori infection that interferes with various intracellular events, causing prolonged cell survival, which is characteristic in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号