首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Bangladesh, highly pathogenic avian influenza H5N1 is endemic in poultry. This study aimed to understand the biosecurity conditions and farmers’ perception of avian influenza biosecurity in Bangladeshi small commercial chicken farms. During 2011–2012, we conducted observations, in-depth interviews and group discussions with poultry farmers in 16 farms and in-depth interviews with seven local feed vendors from two districts. None of the farms were completely segregated from people, backyard poultry, other animals, households, other poultry farms or large trees. Wild birds and rodents accessed the farms for poultry feed. Farmers usually did not allow the buyers to bring egg trays inside their sheds. Spraying disinfectant in the shed and removing feces were the only regular cleaning and disinfection activities observed. All farmers sold or used untreated feces as fish feed or fertilizer. Farmers were more concerned about Newcastle disease and infectious bursal disease than about avian influenza. Farmers’ understanding about biosecurity and avian influenza was influenced by local vendors. While we seldom observed flock segregation, some farmers used measures that involved additional cost or effort to protect their flocks. These farmers could be motivated by interventions to protect their investment from diseases they consider harmful. Future interventions could explore the feasibility and effectiveness of low-cost alternative biosecurity measures.  相似文献   

2.
The continued spread of highly pathogenic avian influenza (HPAI) viruses of H5 and H7 subtypes and low pathogenic avian influenza (LPAI) viruses of H5, H7 and H9 subtypes in birds and the subsequent infections in humans pose an ongoing pandemic threat. It has been proposed that poultry workers are at higher risk of exposure to HPAI or LPAI viruses and subsequently infection due to their repeated exposure to chickens or domestic waterfowl. The aim of this study was to examine the seroprevalence of antibodies against H5, H7 and H9 viruses amongst duck-related workers in Beijing, China and the risk factors associated with seropositivity. In March, 2011, 1741 participants were recruited from (1) commercial duck-breeding farms; (2) private duck-breeding farms; and (3) duck-slaughtering farms. Local villagers who bred ducks in their backyards were also recruited. A survey was administered by face-to-face interview, and blood samples were collected from subjects for antibody testing against H5, H7 and H9 viruses. We found that none of the subjects were seropositive for either H5 or H7 viruses, and only 0.7% (12/1741) had antibody against H9. A statistically significant difference in H9 antibody seroprevalence existed between the various categories of workers (P = 0.005), with the highest figures recorded amongst the villagers (1.7%). Independent risk factors associated with seropositivity toinfection with H9 virus included less frequent disinfection of worksite (OR, 5.13 [95% CI, 1.07–24.58]; P = 0.041; ≤ twice monthly versus>twice monthly) and handling ducks with wounds on hands (OR, 4.13 [95% CI, 1.26–13.57]; P = 0.019). Whilst the risk of infection with H5, H7 and H9 viruses appears to be low among duck-related workers in Beijing, China, ongoing monitoring of infection with the H9 virus is still warranted, especially amongst villagers who breed backyard ducks to monitor for any changes.  相似文献   

3.
Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies.  相似文献   

4.

Background  

The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006.  相似文献   

5.

Background

In this prospective study we sought to examine seroepidemiological evidence for acute zoonotic influenza virus infection among Romanian agricultural workers.

Methods

Sera were drawn upon enrollment (2009) and again at 12 and 24 months from 312 adult agriculture workers and 51 age-group matched controls. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members meeting ILI criteria permitted respiratory swab collections as well as acute and convalescent serum collection. Serologic assays were performed against 9 avian, 3 swine, and 3 human influenza viruses.

Results

During the two-year follow-up, a total of 23 ILI events were reported. Two subjects'' specimens were identified as influenza A by rRT-PCR. During the follow-up period, three individuals experienced elevated microneutralization antibody titers ≥1∶80 against three (one each) avian influenza viruses: A/Teal/Hong Kong/w312/97(H6N1), A/Hong Kong/1073/1999(H9N2), or A/Duck/Alberta/60/1976(H12N5). However, none of these participants met the criteria for poultry exposure. A number of subjects demonstrated four-fold increases over time in hemagglutination inhibition (HI) assay titers for at least one of the three swine influenza viruses (SIVs); however, it seems likely that two of these three responses were due to cross-reacting antibody against human influenza. Only elevated antibody titers against A/Swine/Flanders/1/1998(H3N2) lacked evidence for such confounding. In examining risk factors for elevated antibody against this SIV with multiple logistic regression, swine exposure (adjusted OR = 1.8, 95% CI 1.1–2.8) and tobacco use (adjusted OR = 1.8; 95% CI 1.1–2.9) were important predictors.

Conclusions

While Romania has recently experienced multiple incursions of highly pathogenic avian influenza among domestic poultry, this cohort of Romanian agriculture workers had sparse evidence of avian influenza virus infections. In contrast, there was evidence, especially among the swine exposed participants, of infections with human and one swine H3N2 influenza virus.  相似文献   

6.
  • 1 Avian influenza (AI) viruses primarily circulate in wild waterfowl populations and are occasionally transmitted to domestic poultry flocks. However, the possible roles of other wildlife species, such as wild mammals, in AI virus ecology have not been adequately addressed.
  • 2 Due to their habitat and behaviour, many wild mammals may be capable of transmitting pathogens among wild and domestic populations. Exposure to AI viruses has been reported in an array of wild and domestic animals. The presence of wild mammals on farms has been identified as a risk factor for at least one poultry AI outbreak in North America. These reports suggest the need for seroprevalence studies examining the exposure of wild mammals to AI viruses.
  • 3 Serological tests are routinely used to assess domestic poultry, domestic swine and human exposure to influenza A viruses, but these tests have not been validated for use in wild mammals. As such, some of these protocols may require adjustments or may be inappropriate for use in serology testing of wild mammals. Herein, we review these serological techniques and evaluate their potential usefulness in AI surveillance of wild mammals. We call for care to be taken when applying serological tests outside their original area of validation, and for continued assay verification for multiple species and virus strains.
  相似文献   

7.
Since Feb, 2013, more than 100 human beings had been infected with novel H7N9 avian influenza virus. As of May 2013, several H7N9 viruses had been found in retail live bird markets (LBMs) in Guangdong province of southern China where several human cases were confirmed later. However, the real avian influenza virus infection status especially H7N9 in Guangzhou remains unclear. Therefore, a cross-sectional study of avian influenza in commercial poultry farms, the wholesale LBM and retail LBMs in one district of Guangzhou was conducted from October to November, 2013. A total of 1505 cloacal and environmental samples from 52 commercial poultry farms, 1 wholesale LBM and 18 retail LBMs were collected and detected using real-time RT-PCR for type A, H7, H7N9 and H9 subtype avian influenza virus, respectively. Of all the flocks randomly sampled, 6 farms, 12 vendors of the wholesale LBM and 18 retail LBMs were type A avian influenza virus positive with 0, 3 and 11 positive for H9, respectively. The pooled prevalence and individual prevalence of type A avian influenza virus were 33.9% and 7.9% which for H9 subtype was 7.6% and 1.6%, respectively. None was H7 and H7N9 subtype virus positive. Different prevalence and prevalence ratio were found in different poultry species with partridges having the highest prevalence for both type A and H9 subtype avian influenza virus. Our results suggest that LBM may have a higher risk for sustaining and transmission of avian influenza virus than commercial poultry farms. The present study also indicates that different species may play different roles in the evolution and transmission of avian influenza virus. Therefore, risk-based surveillance and management measures should be conducted in future in this area.  相似文献   

8.
During the last decade the number of reported outbreaks caused by highly pathogenic avian influenza (HPAI) in domestic poultry has drastically increased. At the same time, low pathogenic avian influenza (LPAI) strains, such as H9N2 in many parts of the Middle East and Asia and H6N2 in live bird markets in California, have become endemic. Each AI outbreak brings the concomitant possibility of poultry-to-human transmission. Indeed, human illness and death have resulted from such occasional transmissions with highly pathogenic avian H7N7 and H5N1 viruses while avian H9N2 viruses have been isolated from individuals with mild influenza. The transmission of avian influenza directly from poultry to humans has brought a sense of urgency in terms of understanding the mechanisms that lead to interspecies transmission of influenza. Domestic poultry species have been previously overlooked as potential intermediate hosts in the generation of influenza viruses with the capacity to infect humans. In this review, we will discuss molecular and epidemiological aspects that have led to the recurrent emergence of avian influenza strains with pandemic potential, with a particular emphasis on the current Asian H5N1 viruses.  相似文献   

9.
The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.  相似文献   

10.
Human infections with H5, H7, and H9 avian influenza viruses are well documented. Exposure to poultry is the most important risk factor for humans becoming infected with these viruses. Data on human infection with other low pathogenicity avian influenza viruses is sparse but suggests that such infections may occur. Lebanon is a Mediterranean country lying under two major migratory birds flyways and is home to many wild and domestic bird species. Previous reports from this country demonstrated that low pathogenicity avian influenza viruses are in circulation but highly pathogenic H5N1 viruses were not reported. In order to study the extent of human infection with avian influenza viruses in Lebanon, we carried out a seroprevalence cross-sectional study into which 200 poultry-exposed individuals and 50 non-exposed controls were enrolled. We obtained their sera and tested it for the presence of antibodies against avian influenza viruses types H4 through H16 and used a questionnaire to collect exposure data. Our microneutralization assay results suggested that backyard poultry growers may have been previously infected with H4 and H11 avian influenza viruses. We confirmed these results by using a horse red blood cells hemagglutination inhibition assay. Our data also showed that farmers with antibodies against each virus type clustered in a small geographic area suggesting that unrecognized outbreaks among birds may have led to these human infections. In conclusion, this study suggests that occupational exposure to chicken is a risk factor for infection with avian influenza especially among backyard growers and that H4 and H11 influenza viruses may possess the ability to cross the species barrier to infect humans.  相似文献   

11.

Background

Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined.

Methodology/Principal Findings

Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤106.02 PCR EID50 equivalent/mL and ≤105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI.

Conclusions/Significance

These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.  相似文献   

12.
In article organizational aspects of carrying out preventive and antiepidemic actions at a regional level are considered at the bird's flu epizootia. Epizootic researches have shown, that infection of poultry has taken place as a result of contact to a wild bird. Serological inspection 521 persons on presence of antibodies to a influenza A (H5N1) has not revealed seropositive persons. The conclusion, that the forecast of development of a situation for spring of 2006 is made in view of a direction of migration of a wild waterfowl is unfavourable.  相似文献   

13.
H5N1禽流感的威胁与全球应对   总被引:1,自引:0,他引:1  
当前H5N1禽流感在迁徙禽类、家禽中的暴发,以及越来越多的人感染病例的发生,使流感全球大流行的可能性持续存在。简要综述了H5N1禽流感在鸟类和其他动物中的暴发情况,H5N1禽流感的人感染病例,以及全球禽流感应对计划及疫苗、药物、病原体基础研究的进展。  相似文献   

14.
Italy has experienced recurrent incursions of H5N2 avian influenza (AI) viruses in different geographical areas and varying sectors of the domestic poultry industry. Considering outbreak heterogeneity rather than treating all outbreaks of low pathogenicity AI (LPAI) viruses equally is important given their interactions with the environment and potential to spread, evolve and increase pathogenicity. This study aims at identifying potential environmental drivers of H5N2 LPAI outbreak occurrence in time, space and poultry populations. Thirty-four environmental variables were tested for association with the characteristics of 27 H5N2 LPAI outbreaks (i.e. time, place, flock type, number and species of birds affected) occurred among domestic poultry flocks in Italy in 2010–2012. This was done by applying a recently proposed analytical approach based on a combined non-metric multidimensional scaling, clustering and regression analysis. Results indicated that the pattern of (dis)similarities among the outbreaks entailed an underlying structure that may be the outcome of large-scale, environmental interactions in ecological dimension. Increased densities of poultry breeders, and increased land coverage by industrial, commercial and transport units were associated with increased heterogeneity in outbreak characteristics. In areas with high breeder densities and with many infrastructures, outbreaks affected mainly industrial turkey/layer flocks. Outbreaks affecting ornamental, commercial and rural multi-species flocks occurred mainly in lowly infrastructured areas of northern Italy. Outbreaks affecting rural layer flocks occurred mainly in areas with low breeder densities in south-central Italy. In savannah-like environments, outbreaks affected mainly commercial flocks of galliformes. Suggestive evidence that ecological ordination makes sense genetically was also provided, as virus strains showing high genetic similarity clustered into ecologically similar outbreaks. Findings were informed by hypotheses about how ecological interactions among poultry populations, viruses and their environments can be related to the observed patterns of H5N2 LPAI occurrence. This may prove useful in enhancing future interventions by developing site-specific, ecologically-grounded strategies.  相似文献   

15.
Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.  相似文献   

16.

Background

Helicobacter pylori, a lifelong and typically asymptomatic infection of the stomach, profoundly alters gastric immune responses, and may benefit the host in protection against other pathogens. We explored the hypothesis that H. pylori contributes to the control of infection with Mycobacterium tuberculosis.

Methodology/Principal Findings

We first examined M. tuberculosis-specific IFN-γ and H. pylori antibody responses in 339 healthy Northern Californians undergoing routine tuberculin skin testing. Of 97 subjects (29%) meeting criteria for latent tuberculosis (TB) infection (LTBI), 45 (46%) were H. pylori seropositive. Subjects with LTBI who were H. pylori-seropositive had 1.5-fold higher TB antigen-induced IFN-γ responses (p = 0.04, ANOVA), and a more Th-1 like cytokine profile in peripheral blood mononuclear cells, compared to those who were H. pylori seronegative. To explore an association between H. pylori infection and clinical outcome of TB exposure, we evaluated H. pylori seroprevalence in baseline samples from two high risk TB case-contact cohorts, and from cynomolgus macaques experimentally challenged with M. tuberculosis. Compared to 513 household contacts who did not progress to active disease during a median 24 months follow-up, 120 prevalent TB cases were significantly less likely to be H. pylori infected (AOR: 0.55, 95% CI 0.0.36–0.83, p = 0.005), though seroprevalence was not significantly different from non-progressors in 37 incident TB cases (AOR: 1.35 [95% CI 0.63–2.9] p = 0.44). Cynomolgus macaques with natural H. pylori infection were significantly less likely to progress to TB 6 to 8 months after M. tuberculosis challenge (RR: 0.31 [95% CI 0.12–0.80], p = 0.04).

Conclusions/Significance

H. pylori infection may induce bystander effects that modify the risk of active TB in humans and non-human primates. That immunity to TB may be enhanced by exposure to other microbial agents may have important implications for vaccine development and disease control.  相似文献   

17.
Prior to the emergence of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 influenza A virus, the long-held and well-supported paradigm was that highly pathogenic avian influenza (HPAI) outbreaks were restricted to poultry, the result of cross-species transmission of precursor viruses from wild aquatic birds that subsequently gained pathogenicity in domestic birds. Therefore, management agencies typically adopted a prevention, control, and eradication strategy that included strict biosecurity for domestic bird production, isolation of infected and exposed flocks, and prompt depopulation. In most cases, this strategy has proved sufficient for eradicating HPAI. Since 2002, this paradigm has been challenged with many detections of viral descendants of the Gs/GD lineage among wild birds, most of which have been associated with sporadic mortality events. Since the emergence and evolution of the genetically distinct clade 2.3.4.4 Gs/GD lineage HPAI viruses in approximately 2010, there have been further increases in the occurrence of HPAI in wild birds and geographic spread through migratory bird movement. A prominent example is the introduction of clade 2.3.4.4 Gs/GD HPAI viruses from East Asia to North America via migratory birds in autumn 2014 that ultimately led to the largest outbreak of HPAI in the history of the United States. Given the apparent maintenance of Gs/GD lineage HPAI viruses in a global avian reservoir; bidirectional virus exchange between wild and domestic birds facilitating the continued adaptation of Gs/GD HPAI viruses in wild bird hosts; the current frequency of HPAI outbreaks in wild birds globally, and particularly in Eurasia where Gs/GD HPAI viruses may now be enzootic; and ongoing dispersal of AI viruses from East Asia to North America via migratory birds, HPAI now represents an emerging disease threat to North American wildlife. This recent paradigm shift implies that management of HPAI in domestic birds alone may no longer be sufficient to eradicate HPAI viruses from a given country or region. Rather, agencies managing wild birds and their habitats may consider the development or adoption of mitigation strategies to minimize introductions to poultry, to reduce negative impacts on wild bird populations, and to diminish adverse effects to stakeholders using wildlife resources. The main objective of this review is, therefore, to provide information that will assist wildlife managers in developing mitigation strategies or approaches for dealing with outbreaks of Gs/GD HPAI in wild birds in the form of preparedness, surveillance, research, communications, and targeted management actions. Resultant outbreak response plans and actions may represent meaningful steps of wildlife managers toward the use of collaborative and multi-jurisdictional One Health approaches when it comes to the detection, investigation, and mitigation of emerging viruses at the human-domestic animal-wildlife interface.  相似文献   

18.
An H7N3 avian influenza virus (AIV) was isolated from a Cinnamon Teal (Anas cyanoptera) (A/CinnamonTeal/Bolivia/4537/01) during a survey of wild waterfowl in Bolivia in 2001. The NA and M genes had the greatest identity with North American wild bird isolates, the NS was most closely related to an equine virus, and the remaining genes were most closely related to isolates from an outbreak of H7N3 in commercial poultry in Chile in 2002. The HA protein cleavage site and the results of pathogenesis studies in chickens were consistent with a low-pathogenicity virus, and the infective dose was 10(5) times higher for chickens than turkeys.  相似文献   

19.
Influenza exposure in United States feral swine populations   总被引:1,自引:0,他引:1  
Swine play an important role in the disease ecology of influenza. Having cellular receptors in common with birds and humans, swine provide opportunities for mixed infections and potential for genetic reassortment between avian, human, and porcine influenza. Feral swine populations are rapidly expanding in both numbers and range and are increasingly coming into contact with waterfowl, humans, and agricultural operations. In this study, over 875 feral swine were sampled from six states across the United States for serologic evidence of exposure to influenza. In Oklahoma, Florida, and Missouri, USA, no seropositive feral swine were detected. Seropositive swine were detected in California, Mississippi, and Texas, USA. Antibody prevalences in these states were 1% in Mississippi, 5% in California, and 14.4% in Texas. All seropositive swine were exposed to H3N2 subtype, the predominant subtype currently circulating in domestic swine. The only exceptions were in San Saba County, Texas, where of the 15 seropositive samples, four were positive for H1N1 and seven for both H1N1 and H3N2. In Texas, there was large geographical and temporal variation in antibody prevalence and no obvious connection to domestic swine operations. No evidence of exposure to avian influenza in feral swine was uncovered. From these results it is apparent that influenza in feral swine poses a risk primarily to swine production operations. However, because feral swine share habitat with waterfowl, prey on and scavenge dead and dying birds, are highly mobile, and are increasingly coming into contact with humans, the potential for these animals to become infected with avian or human influenza in addition to swine influenza is a distinct possibility.  相似文献   

20.
Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year timeframe of sampling, indicate a continuous circulation of these viruses in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号