首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
We investigated the influence of environmental parameters and spatial distance on bacterial, archaeal and viral community composition from 13 sites along a 3200-km long voyage from Halifax to Kugluktuk (Canada) through the Labrador Sea, Baffin Bay and the Arctic Archipelago. Variation partitioning was used to disentangle the effects of environmental parameters, spatial distance and spatially correlated environmental parameters on prokaryotic and viral communities. Viral and prokaryotic community composition were related in the Labrador Sea, but were independent of each other in Baffin Bay and the Arctic Archipelago. In oceans, the dominant dispersal mechanism for prokaryotes and viruses is the movement of water masses, thus, dispersal for both groups is passive and similar. Nevertheless, spatial distance explained 7–19% of the variation in viral community composition in the Arctic Archipelago, but was not a significant predictor of bacterial or archaeal community composition in either sampling area, suggesting a decoupling of the processes regulating community composition within these taxonomic groups. According to the metacommunity theory, patterns in bacterial and archaeal community composition suggest a role for species sorting, while patterns of virus community composition are consistent with species sorting in the Labrador Sea and suggest a potential role of mass effects in the Arctic Archipelago. Given that, a specific prokaryotic taxon may be infected by multiple viruses with high reproductive potential, our results suggest that viral community composition was subject to a high turnover relative to prokaryotic community composition in the Arctic Archipelago.  相似文献   

3.
4.
5.
6.
7.
Darwin's finches represent a dynamic radiation of birds within the Galápagos Archipelago. Unlike classic island radiations dominated by island endemics and intuitive ‘conveyer belt’ colonization with little subsequent dispersal, species of Darwin's finches have populations distributed across many islands and each island contains complex metacommunities of closely related birds. Understanding the role of metacommunity and structured population dynamics in speciation within this heterogeneous island system would provide insights into the roles of fragmentation and dispersal in evolution. In this study, a large multi‐species dataset and a comparative ground finch dataset (two co‐distributed lineages) were used to show how landscape features influence patterns of gene flow across the archipelago. Factors expected to regulate migration including distance and movement from large, central islands to small, peripheral islands were rejected in the multi‐species dataset. Instead, the harsh northeast islands contributed individuals to the larger central islands. Successful immigration relies on three factors: arriving, surviving and reproducing, thus the dispersal towards the central islands may be either be due to more migrants orienting towards these land masses due to their large size and high elevation, or may reflect a higher likelihood of survival and successful reproduction due to the larger diversity of habitats and more environmentally stable ecosystems that these islands possess. Further, the overall directionality of migration was south‐southwest against the dominant winds and currents. In comparing dispersal between the common cactus finch and medium ground finch, both species had similar migration rates but the cactus finch had approximately half the numbers of migrants due to lower effective populations sizes. Significant population structure in the cactus finch indicates potential for further speciation, while the medium ground finch maintains cohesive gene flow across islands. These patterns shed light on the macroevolutionary patterns that drive diversification and speciation within a radiation of highly‐volant taxa.  相似文献   

8.
9.
Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed stronger spatial patterning than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our results reveal that body size and dispersal mode are important drivers of metacommunity structure and these traits should therefore be considered when developing a predictive framework for metacommunity dynamics.  相似文献   

10.
Abstract.  1. Plants respond to herbivore damage by inducing defences that can affect the abundance of herbivores and predators. These tritrophic interactions may be influenced by heterogeneity in plant neighbourhood.
2. In the present study, the effects of induced responses on the abundance of herbivores (flea beetles and aphids), omnivores (pirate bugs and thrips), and predators (lady beetles and spiders) on individual plants and their neighbours between and within patches composed of three tomato plants was investigated.
3. Herbivore damage was manipulated to create homogeneous patches where either all or none of the plants had defences induced by herbivore damage, and heterogeneous patches where only one of the plants was induced.
4. Arthropod abundance on plants at different scales was compared by testing between patch effects (patch level), for neighbourhood effects at the plant phenotype level (neighbourhood level), and between near and far plants (within patch position).
5. At the patch level , plants in homogeneously induced patches contained fewer flea beetles and pirate bugs, but more lady beetles, compared with homogeneously non-induced patches. There was no effect of patch type on the abundance of aphids, thrips, and spiders on plants.
6. At the neighbourhood level , induced plants in heterogeneous patches contained more flea beetles and pirate bugs compared with induced plants in homogeneous patches, indicating that the abundance of some herbivores and omnivores on induced plants varied depending on the phenotype of the other plants within the patch. Within patch position, there was no evidence that the abundance of herbivores or predators on non-induced plants was affected by proximity to an induced plant.
7. Therefore, variation in plant neighbourhood generated by induced plant responses affected the abundance of three arthropods from three feeding guilds.  相似文献   

11.
Understanding how species are distributed according to environmental and spatial variation is still one of the main issues in community ecology. We analysed the responses of semiaquatic bugs (Gerromorpha: Hemiptera) to environmental and spatial processes considered drivers of metacommunity structure in Amazonian streams. We tested the hypotheses that environmental variables determine the metacommunity structure and that the spatial structures, both dendritic and overland, are not representative of the metacommunity structure. Environmental variables and semiaquatic bugs were collected from 39 stream sites. Spatial variables were calculated in two configurations – overland and hydrographic distances between streams. We used partial redundancy analysis to test the relative importance of environment and space on the metacommunity structure, considering the two spatial configurations separately. The environmental variables were the metacommunity drivers in tropical streams, mainly structured by the depth, canopy, embeddedness and slope variables. Our results also indicate little or no dispersion limitation, as no spatial patterns were found. Thus, environmental selection determines the semiaquatic bugs' metacommunity structure due to the achievement of optimal habitats through dispersal. We also believe that dispersion cannot be ruled out as a metacommunity driver, since the peculiarities of the group show seasonal changes in dispersion ability, and spatial patterns may occur under different temporal scales.  相似文献   

12.
13.
In a previous study, a model of landscape heterogeneity was developed and applied to a spatially structured wild rabbit (Oryctolagus cuniculus) population. That study showed clearly the influence of resource heterogeneity on connectivity levels. The simulation study was based on female movements and used population genetic validation data appropriate for a female study. Most models assume that males and females will exhibit similar patterns, although this has rarely been tested. In the current study we extend the analysis to consider differences between female and male connectivity in the same spatially structured pest system. Amplified fragment length polymorphism (AFLP) markers were screened on the same samples used previously for mtDNA analysis. The mtDNA data were used to validate female results, and AFLP data were used to validate combined male and female results. Connectivity patterns from the two simulations (female, and combined male and female) connectivity patterns showed no association. However, each was concordant with appropriate validation data, showing highly significant associations between pairwise population connectivity and the genetic data. A relative connectivity metric for the combined simulation was regressed against the mean of pairwise ΦST values, with almost 70% of the variation explained by a linear model. Demonstrating differential effects of habitat heterogeneity on male and female connectivity provides further evidence that spatial resource heterogeneity impacts on connectivity. Understanding differences in population connectivity will allow improved predictions of disease spread, local extinctions and recolonizations. Furthermore, modelling such differences in pest systems will allow management plans to be better targeted, for example by strategically introducing diseases for control purposes into populations which exhibit high male connectivity to aid spread, but low female connectivity to inhibit recolonization potential after control.  相似文献   

14.
15.
1. The notion that the spatial configuration of habitat patches has to be taken into account to understand the structure and dynamics of ecological communities is the starting point of metacommunity ecology. One way to assess metacommunity structure is to investigate the relative importance of environmental heterogeneity and spatial structure in explaining community patterns over different spatial and temporal scales. 2. We studied metacommunity structure of large branchiopod assemblages characteristic of subtropical temporary pans in SE Zimbabwe using two community data sets: a community snapshot and a long‐term data set covering 4 years. We assessed the relative importance of environmental heterogeneity and dispersal (inferred from patch occupancy patterns) as drivers of community structure. Furthermore, we contrasted metacommunity patterns in pans that occasionally connect to the river (floodplain pans) and pans that lack such connections altogether (endorheic pans) using redundancy models. 3. Echoes of species sorting and dispersal limitation emerge from our data set, suggesting that both local and regional processes contribute to explaining branchiopod assemblages in this system. Relative importance of local and regional factors depended on the type of data set considered. Overall, habitat characteristics that vary in time, such as conductivity, hydroperiod and vegetation cover, best explained the instantaneous species composition observed during a snapshot sampling while long‐term species composition appeared to be linked to more constant intrinsic habitat properties such as river connectivity and spatial location.  相似文献   

16.
17.
We examined the relative contributions of regional spatial characteristics and local environmental conditions in determining Paraguayan bat species composition. We used a suite of full and partial redundancy analyses to estimate four additive partitions of variance in bat species composition: (a) unexplained variation, (b) that explained purely by spatial characteristics, (c) that explained purely by local environmental conditions and (d) that explained jointly by space and environment. The spatial component to bat species composition was greater than the environmental component and both pure spatial and pure environmental characteristics accounted for significant amounts of variation in bat species composition. Results from variance decomposition suggest that the mass effects model describes metacommunity structure of Paraguayan bats better than species sorting or neutral models. Such mass effects may potentially be general for bats and could explain the inability of purely local factors to fully account for bat community organization. Mass effects also have substantial conservation implications because rescue effects may enhance the persistence of mobile species in fragmented landscapes with relatively few protected sites.  相似文献   

18.
19.
三维土壤异质性对种子萌发影响的实验研究 种子萌发受其生长环境的影响,但土壤异质性对种子萌发的作用还不太清楚。本文通过控制实验研究了三维土壤异质性对草本植物种子萌发的影响,实验设置了两种水平的土壤异质性,即通过在花盆内的三维空间上相间填充营养丰富和贫瘠两种土壤来构建不同的土壤异质性水平。两种水平土壤异质性的斑块大小分别为7.5和15.0 cm。实验采用两种草本植物(黑麦草Lolium perenne和垂穗披碱草Elymus nutans),每种植物选择大小一致的种子50粒,这些种子要么放在异质性土壤中萌发,要么放在培养皿中萌发。实验过程中,每天统计这些种子的萌发率。实验发现,斑块小的花盆内种子萌发率较低,这个结果与我们的预期相符,我们认为斑块小的花盆内,两种土壤斑块之间的间距较小,植物遭遇不同土壤斑块资源变动的几率较大,植物为了减小这种变动带来的不利影响,会倾向于降低萌发率和延迟萌发。我们的研究还发现,斑块小的花盆内种子萌发的变异性也较大,即与大斑块内的种子萌发率相比,小斑块内的种子萌发率在各重复间的差异性较大。与二维土壤异质性相比,三维土壤异质性更接近于真实情况,这样的土壤设置能够促进我们更好地理解土壤空间异质性对种子萌发等动态过程的影响.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号