首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), rapidly spread across the world in late 2019, leading to a pandemic. While SARS-CoV-2 infections predominately affect the respiratory system, severe infections can lead to renal and cardiac injury and even death. Due to its highly transmissible nature and severe health implications, animal models of SARS-CoV-2 are critical to developing novel therapeutics and preventatives. Syrian hamsters (Mesocricetus auratus) are an ideal animal model of SARS-CoV-2 infections because they recapitulate many aspects of human infections. After inoculation with SARS-CoV-2, hamsters become moribund, lose weight, and show varying degrees of respiratory disease, lethargy, and ruffled fur. Histopathologically, their pulmonary lesions are consistent with human infections including interstitial to broncho-interstitial pneumonia, alveolar hemorrhage and edema, and granulocyte infiltration. Similar to humans, the duration of clinical signs and pulmonary pathology are short lived with rapid recovery by 14 d after infection. Immunocompromised hamsters develop more severe infections and mortality. Preclinical studies in hamsters have shown efficacy of therapeutics, including convalescent serum treatment, and preventatives, including vaccination, in limiting or preventing clinical disease. Although hamster studies have contributed greatly to our understanding of the pathogenesis and progression of disease after SARS-CoV-2 infection, additional studies are required to better characterize the effects of age, sex, and virus variants on clinical outcomes in hamsters. This review aims to describe key findings from studies of hamsters infected with SARS-CoV-2 and to highlight areas that need further investigation.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus that was first detected in Wuhan, China at the end of 2019.31 Coronavirus infections predominantly present with either respiratory or gastrointestinal manifestations, depending on the strain and host. While many coronavirus infections result in mild clinical symptoms, SARS-CoV-2 is highly pathogenic and poses significant health concerns.31,58,78 Although initial clinical signs are attributed to the respiratory system, severe infections result in systemic complications, such as acute cardiac and renal injury, secondary infections, and shock.31,58SARS-CoV-2 relies on a structural surface spike glycoprotein to establish infection. The spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells to gain entry in a receptor-mediated fashion. This interaction facilitates both human-to-human transmission and cross-species infection.77 Species tropism is determined by the presence of ACE2 residues that recognize the SARS-CoV-2 spike protein. Animals permissive for SARS-CoV-2 infection include cats, ferrets, pigs, nonhuman primates, select genetically modified mice, and hamsters.5,7,23,37,67 Susceptible species can be both intermediate hosts and sources of infection of SARS-CoV-2 for humans.77 Rodents, such as mice and hamsters, are ideal models for the study of COVID-19 due to their small size, ready availability, low cost of care, SPF status, and in-depth characterization across a variety of translational models, including past and present betacoronavirus infections.60,61 Although transgenic mice expressing human ACE2 are susceptible to SARS-CoV-2 infection, Syrian hamsters (Mesocricetus auratus) naturally express ACE2 residues that recognize the SARS-CoV-2 spike protein.5,46,84 As such, Syrian hamsters are a valuable animal model for studying COVID-19.Syrian hamsters, commonly referred to as golden hamsters, belong to the family Cricetidae and have a natural geographic range of arid southeast Europe and Asia Minor. Additional members of the Cricetidae family used in biomedical research include Chinese hamsters (Cricetulus griseus), European hamsters (Cricetus cricetus), Armenian hamsters (Cricetulus migratorius), and dwarf hamsters (Phodopus species). Unless otherwise noted, any mention of hamsters in this overview refers to Syrian hamsters. Laboratory hamsters primarily originated from one Syrian litter captured in 1930. Progeny of this litter were first imported into the United States in 1938.50 Outbred Syrian hamsters are widely available; recently developed transgenic hamsters are increasingly used in biomedical research and may provide unique insight into SARS-CoV-2 infections.22,44 Syrian hamsters have a rich history in biomedical research and can be used to model cancer and infectious, metabolic, cardiovascular, and respiratory diseases.50Hamsters play an important role in SARS-CoV-2 studies. This is due, in part, to their susceptibility to the first described highly pathogenic coronavirus infection in the 21st century, severe acute respiratory syndrome (SARS-CoV). SARS-CoV emerged in late 2002 in Southern China. Although individuals in more than 20 countries contracted SARS-CoV, the spread was quickly contained, with the last reported case in July 2003.16,40 After experimental infection with SARS-CoV, hamsters developed high viral loads in the lungs and nasal turbinates.15,32,56,62,69 Pulmonary pathology included inflammation, cell necrosis, and consolidation without clinical signs of disease.61 Based on their susceptibility to SARS-CoV and natural expression of ACE2 capable of recognizing the SARS-CoV-2 spike protein, hamsters have been a preferred model of SARS-CoV-2. Hamster studies have replicated key aspects of SARS-CoV-2 infections in humans, including viral replication, transmission, and pathology. Furthermore, hamsters are a model organism for developing and testing novel preventions and therapeutics. However, using hamsters in biomedical research has several key limitations, including the lack of reagents, especially antibodies, suitable for use with hamster tissue and the relatively few established transgenic hamsters compared to mice. The purpose of this review is to describe key findings of hamster models of SARS-CoV-2 and to highlight gaps in our current understanding that will require further investigation.  相似文献   

2.
SARS动物模型的研究   总被引:2,自引:0,他引:2  
利用分离的SARS CoV毒株BJ 0 1,经滴鼻等途径感染大鼠、豚鼠、黑线仓鼠、白化仓鼠和雏鸡等 5个种属的动物 ,筛选对SARS易感的小动物。在此基础上 ,选择食蟹猴和恒河猴进行SARS的人工感染实验 ,评价其作为SARS动物模型的可能性。结果表明 ,大鼠、豚鼠、黑线仓鼠、白化仓鼠和雏鸡等动物对SARS均不易感 ,感染后未观察到任何的临床及病理学改变 ,不过从感染 2周后的大鼠和豚鼠的肺和咽等组织样本中检测到了的特异的核酸 ,提示SARS CoV能够在这两种动物的体内复制。从感染猴子的分泌物和脏器中分离出了病毒 ,证明SARS CoV也能够在猴子体内复制。临床和病理组织学检查结果显示 ,SARS病毒接种食蟹猴和恒河猴后 ,可以引起所有实验猴发生间质性肺炎 ,其病理学改变与人类感染SARS病毒后肺部病变近似 ,但病变的严重程度比较人类的轻得多 ,除此之外无任何其它的明显的临床表现及组织病理学改变 ,按照动物模型的指标判断食蟹猴和恒河猴并不是SARS的理想动物模型 ,不过在目前尚没有更理想的动物模型情况下 ,以间质性肺炎为病理学检查指标 ,恒河猴和食蟹猴可以作为评价抗SARS药物和疫苗的模型动物  相似文献   

3.
4.
非典-SARS-冠状病毒   总被引:3,自引:0,他引:3  
2002年11月,一种神秘不明的疾病出现在我国广东省继页肆虐全球,世界上有27个国家和地区相继报道出现这种疫情.  相似文献   

5.
6.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several accessory proteins of unknown function. One of these proteins, protein 6 (p6), which is encoded by ORF6, enhances virus replication when introduced into a heterologous murine coronavirus (mouse hepatitis virus [MHV]) but is not essential for optimal SARS-CoV replication after infection at a relatively high multiplicity of infection (MOI). Here, we reconcile these apparently conflicting results by showing that p6 enhances SARS-CoV replication to nearly the same extent as when expressed in the context of MHV if cells are infected at a low MOI and accelerates disease in mice transgenic for the human SARS-CoV receptor.The genome of severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several structural proteins, including the spike, nucleocapsid, membrane, and envelope proteins (13). Integrated between and within these structural proteins are eight accessory proteins (6, 8, 10, 15, 16, 18, 21-27). Our laboratory showed previously that one of these SARS-CoV-specific accessory proteins, encoded by ORF6, showed a clearly recognizable phenotype when introduced into a heterologous attenuated murine coronavirus, mouse hepatitis virus (MHV) strain J2.2-V-1 (rJ2.2.6). rJ2.2.6 grew more rapidly and to higher titers in tissue culture cells and in the murine central nervous system than control viruses, and the presence of p6 increased mortality in mice from 10 to 20% to 80% (7, 19, 20). However, the absence of p6 did not diminish SARS-CoV growth in tissue culture cells when cells were infected with 1 PFU/cell (31). In addition to a role in enhancing virus replication, when expressed in the context of a SARS-CoV infection or by transfection, p6 blocked interferon (IFN)-induced STAT1 nuclear translocation by retention of the nuclear import adaptor molecule karyopherin alpha 2 in the cytoplasm, indicating a role in thwarting innate immune effectors (5, 11). In contrast, p6 did not significantly diminish IFN sensitivity when expressed in the context of rJ2.2 (20).The results described above were puzzling, because p6 seemed to be required for the optimal replication of a heterologous coronavirus but not for that of SARS-CoV. Thus, the objective of this study was to determine whether p6 could enhance SARS-CoV replication in tissue culture cells under any conditions. For this purpose, we examined its function by comparing the growth of a recombinant SARS-CoV (rSARS-CoV) in which p6 was deleted (rSARS-CoVΔ6) with that of wild-type rSARS-CoV at a range of multiplicities of infection (MOIs). Normal mice infected with SARS-CoV readily cleared the infection, making it difficult to detect a role for p6 in vivo. However, mice that are transgenic for expression of the human receptor angiotensin-converting enzyme 2 (hACE2) are exquisitely sensitive to infection with SARS-CoV and are useful for identifying an in vivo role for p6 (14).  相似文献   

7.
严重急性呼吸系统综合征(SARS)是2002年底爆发于中国广东,后蔓延全球的传染性疾病。其病原体为一种未知的新型冠状病毒,章从SARS冠状病毒的蛋白构成和功能研究、SARS冠状病毒感染机制(表型变化,受体)、SARS冠状病毒分子进化这几个方面对现有研究进展做一综述。  相似文献   

8.
Ying W  Hao Y  Zhang Y  Peng W  Qin E  Cai Y  Wei K  Wang J  Chang G  Sun W  Dai S  Li X  Zhu Y  Li J  Wu S  Guo L  Dai J  Wang J  Wan P  Chen T  Du C  Li D  Wan J  Kuai X  Li W  Shi R  Wei H  Cao C  Yu M  Liu H  Dong F  Wang D  Zhang X  Qian X  Zhu Q  He F 《Proteomics》2004,4(2):492-504
Recently, a new coronavirus was isolated from the lung tissue of autopsy sample and nasal/throat swabs of the patients with Severe Acute Respiratory Syndrome (SARS) and the causative association with SARS was determined. To reveal further the characteristics of the virus and to provide insight about the molecular mechanism of SARS etiology, a proteomic strategy was utilized to identify the structural proteins of SARS coronavirus (SARS-CoV) isolated from Vero E6 cells infected with the BJ-01 strain of the virus. At first, Western blotting with the convalescent sera from SARS patients demonstrated that there were various structural proteins of SARS-CoV in the cultured supernatant of virus infected-Vero E6 cells and that nucleocaspid (N) protein had a prominent immunogenicity to the convalescent sera from the patients with SARS, while the immune response of spike (S) protein probably binding with membrane (M) glycoprotein was much weaker. Then, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate the complex protein constituents, and the strategy of continuous slicing from loading well to the bottom of the gels was utilized to search thoroughly the structural proteins of the virus. The proteins in sliced slots were trypsinized in-gel and identified by mass spectrometry. Three structural proteins named S, N and M proteins of SARS-CoV were uncovered with the sequence coverage of 38.9, 93.1 and 28.1% respectively. Glycosylation modification in S protein was also analyzed and four glycosylation sites were discovered by comparing the mass spectra before and after deglycosylation of the peptides with PNGase F digestion. Matrix-assisted laser desorption/ionization-mass spectrometry determination showed that relative molecular weight of intact N protein is 45 929 Da, which is very close to its theoretically calculated molecular weight 45 935 Da based on the amino acid sequence deduced from the genome with the first amino acid methionine at the N-terminus depleted and second, serine, acetylated, indicating that phosphorylation does not happen at all in the predicted phosphorylation sites within infected cells nor in virus particles. Intriguingly, a series of shorter isoforms of N protein was observed by SDS-PAGE and identified by mass spectrometry characterization. For further confirmation of this phenomenon and its related mechanism, recombinant N protein of SARS-CoV was cleaved in vitro by caspase-3 and -6 respectively. The results demonstrated that these shorter isoforms could be the products from cleavage of caspase-3 rather than that of caspase-6. Further, the relationship between the caspase cleavage and the viral infection to the host cell is discussed.  相似文献   

9.
10.
为查找引起广州地区流行的严重急性呼吸综合征(SARS)的病原体,采集患者漱口液及尸解标本,用组织培养法接种人胚肺细胞、MDCK细胞、Hep-2细胞和鸡胚分离病毒,用间接免疫荧光法检测患者恢复期血清lgG抗体,确定分离的病原是SARS的主要病因,再用套式RT—PCR、免疫电镜法鉴定病原。结果用人胚肺、Hep-2细胞在75份漱口液和3例尸解组织中分离出13株病原体,经套式RT—PCR扩增出110bp的特异产物,经测序证实为冠状病毒。制备冠状病毒的抗原,检测30份SARS病人恢复期血,其中26份血清lgG抗体阳性。同时检测30份普通发热病人血清作对照,IgG抗体全部阴性。由此证明,经组织培养分离到的病原体是引起SARS的致病因子,用分子生物学方法测序后证实为冠状病毒。  相似文献   

11.
SARS冠状病毒M蛋白的生物信息学研究   总被引:2,自引:0,他引:2  
针对GenBank上发布的来自不同国家地区的39条SARSCoV推测M蛋白,采用生物信息学软件分析其核酸和氨基酸序列,获得其分子生物学特征,确定突变位点,预测功能结构区、Motif及抗原决定簇,比较基因突变对这些功能结构的影响.结果表明:在39个病毒株M蛋白的666 bp中,共有18个病毒株在7个位点上发生了25次变异.在M蛋白序列上预测获得3个跨膜螺旋序列和一个可能的信号肽序列.氨基酸序列的变异主要发生在其跨膜和胞外区域,胞内区域相对较少.预测发现12个Motif和7个抗原决定簇.提示突变对M蛋白的结构功能区的影响不大,也未造成M蛋白的Motif的数量和构成发生改变.对抗原决定簇的影响也主要体现在序列成分构成的改变上,在设计疫苗时,应考虑由其导致的抗原特性改变.  相似文献   

12.
The largest nosocomial outbreak of Middle East respiratory syndrome (MERS) occurred in South Korea in 2015. Health Care Personnel (HCP) are at high risk of acquiring MERS-Coronavirus (MERS-CoV) infections, similar to the severe acute respiratory syndrome (SARS)-Coronavirus (SARS-CoV) infections first identified in 2003. This study described the similarities and differences in epidemiological and clinical characteristics of 183 confirmed global MERS cases and 98 SARS cases in Taiwan associated with HCP. The epidemiological findings showed that the mean age of MERS-HCP and total MERS cases were 40 (24~74) and 49 (2~90) years, respectively, much older than those in SARS [SARS-HCP: 35 (21~68) years, p = 0.006; total SARS: 42 (0~94) years, p = 0.0002]. The case fatality rates (CFR) was much lower in MERS-HCP [7.03% (9/128)] or SARS-HCP [12.24% (12/98)] than the MERS-non-HCP [36.96% (34/92), p<0.001] or SARS-non-HCP [24.50% (61/249), p<0.001], however, no difference was found between MERS-HCP and SARS-HCP [p = 0.181]. In terms of clinical period, the days from onset to death [13 (4~17) vs 14.5 (0~52), p = 0.045] and to discharge [11 (5~24) vs 24 (0~74), p = 0.010] and be hospitalized days [9.5 (3~22) vs 22 (0~69), p = 0.040] were much shorter in MERS-HCP than SARS-HCP. Similarly, days from onset to confirmation were shorter in MERS-HCP than MERS-non-HCP [6 (1~14) vs 10 (1~21), p = 0.044]. In conclusion, the severity of MERS-HCP and SARS-HCP was lower than that of MERS-non-HCP and SARS-non-HCP due to younger age and early confirmation in HCP groups. However, no statistical difference was found in MERS-HCP and SARS-HCP. Thus, prevention of nosocomial infections involving both novel Coronavirus is crucially important to protect HCP.  相似文献   

13.
14.
15.
将SARS患者的咽拭子感染VeroE6细胞 ,用电子显微技术等对SARS病毒进行了研究。结果表明 ,新分离到的病毒粒子没带囊膜时直径大多约 5 0nm ,带有囊膜的直径约 10 0nm。通过RT PCR等证明 ,该病毒是新的冠状病毒。这些病毒可与SARS康复患者的血清呈强烈的阳性反应 ,表明此新的冠状病毒是引起SARS的主要病原。文中还对病毒的发生机制和细胞中的分布进行了探讨。  相似文献   

16.
为建立恒河猴严重急性呼吸道综合征(SARS)的模型并对其致病特点进行观察,采用病毒分离、免疫荧光、光镜及RT-PCR方法对病毒感染组和非感染组恒河猴不同时间、不同组织或分泌物进行检测.结果显示从恒河猴不同组织中分离到病毒,而且在病毒感染后第2d和第5d的血液、第7、9d的鼻咽分泌物、第3d的粪、第5d的粪尿中均检测到SARS-CoV RNA.光镜观察到病毒感染组肺组织肺泡间隔增宽,有大量淋巴细胞、单核细胞浸润,肺泡腔有渗出,甚至形成透明膜样物;多个肺泡形成机化性肺炎的表现.感染组肝组织可见较大的坏死灶,并伴有大量炎性细胞浸润.结论认为已成功建立了恒河猴SARS模型,可用于评价抗SARS药物和疫苗的研究.  相似文献   

17.
In late December 2019, the world woke to a reality of a pandemic of Coronavirus Disease (COVID-19), elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which belongs to a group of β-coronavirus. The potential to cause life-threatening respiratory failure and rapid transmission puts COVID-19 in the list of Public Health Emergency of International Concern (PHEIC). In the last two decades, this is the 3rd deadliest Coronavirus pandemic, following SARS which lasted between 2002 and 2003 and Middle East Respiratory Syndrome (MERS) from 2012 till date. Globally and as of April 23rd 2020, COVID-19 has affected 2,544,792 individuals in over 200 countries, causing 175,694 fatalities. While the SARS-CoV-2 originated in China with 84,302 confirmed cases and 4642 deaths as at the time of writing this review, the rapid transmission of SARS-CoV-2 has resulted in exponential increase in the number of cases outside of China to about 10 times the report case and death in mainland China. SARS-CoV-2 is suspected to be zoonotic in nature as genetic studies have shown sequence similarity to viruses originating from bats. Extreme precautionary measures, such as curfew, shutting of borders and quarantining of individuals suspected to be infected have been instituted with immediate effect; however, due to individuals that are asymptomatic, uncontrolled human-to-human transmission has resulted in exponential infection rate and numerous loss of lives even with this lockdown measures. This review article summarizes the developing situation surrounding the SARS-CoV-2 pandemic with respect to its epidemiology, unique genomic structure, possible origins, transmission, pathogenesis, comparison with other deadly species of Coronaviruses (CoV) and emerging treatment strategies built on informed literature.  相似文献   

18.
The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%).  相似文献   

19.
为建立恒河猴严重急性呼吸道综合征(SARS)的模型并对其致病特点进行观察,采用病毒分离、免疫荧光、光镜及RT-PCR方法对病毒感染组和非感染组恒河猴不同时间、不同组织或分泌物进行检测。结果显示从恒河猴不同组织中分离到病毒,而且在病毒感染后第2d和第5d的血液、第7、9d的鼻咽分泌物、第3d的粪、第5d的粪尿中均检测到SARS-CoV RNA。光镜观察到病毒感染组肺组织肺泡问隔增宽,有大量淋巴细胞、单核细胞浸润,肺泡腔有渗出,甚至形成透明膜样物;多个肺泡形成机化性肺炎的表现。感染组肝组织可见较大的坏死灶,并伴有大量炎性细胞浸润。结论认为已成功建立了恒河猴SARS模型,可用于评价抗SARS药物和疫苗的研究。  相似文献   

20.
The 3C-like proteinase (3CLpro) of the severe acute respiratory syndrome (SARS) coronavirus plays a vital role in virus maturation and is proposed to be a key target for drug design against SARS. Various in vitro studies revealed that only the dimer of the matured 3CLpro is active. However, as the internally encoded 3CLpro gets matured from the replicase polyprotein by autolytic cleavage at both the N-terminal and the C-terminal flanking sites, it is unclear whether the polyprotein also needs to dimerize first for its autocleavage reaction. We constructed a large protein containing the cyan fluorescent protein (C), the N-terminal flanking substrate peptide of SARS 3CLpro (XX), SARS 3CLpro (3CLP), and the yellow fluorescent protein (Y) to study the autoprocessing of 3CLpro using fluorescence resonance energy transfer. In contrast to the matured 3CLpro, the polyprotein, as well as the one-step digested product, 3CLP-Y-His, were shown to be monomeric in gel filtration and analytic ultracentrifuge analysis. However, dimers can still be induced and detected when incubating these large proteins with a substrate analog compound in both chemical cross-linking experiments and analytic ultracentrifuge analysis. We also measured enzyme activity under different enzyme concentrations and found a clear tendency of substrate-induced dimer formation. Based on these discoveries, we conclude that substrate-induced dimerization is essential for the activity of SARS-3CLpro in the polyprotein, and a modified model for the 3CLpro maturation process was proposed. As many viral proteases undergo a similar maturation process, this model might be generally applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号