首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   

2.
Tropomyosin polymerizes along actin filaments and together with troponin regulates muscle contraction in a Ca-dependent manner. Actin-binding periods are homologous residues, which repeat along tropomyosin sequence, form tropomyosin-actin interface and determine regulatory functions. To learn how period 3 is involved in tropomyosin functions we examined effects of two mutations in Tpm1.1, I92T and V95A, which have been linked to dilated and hypertrophic cardiomyopathies characterized respectively by hyper- and hypocontractile phenotypes. In this work the functional consequences of both mutations were studied in vitro by using actin thin filaments reconstituted in the presence of mutant Tpm1.1 homodimers carrying the substitutions in both tropomyosin chains, Tpm1.1 heterodimers with substitution only in one Tpm1.1 chain, and Tpm1.1/Tpm2.2 heterodimers with substitution in Tpm1.1 chain and wild type Tpm2.2 in the second chain. The presence of the substitution I92T decreased the tropomyosin affinity for actin, abolished Ca2+-dependent activation of the actomyosin ATPase, decreased the sensitivity of the tropomyosin-troponin complex to subsaturating Ca2+ concentrations and reduced the cooperativity of the myosin-induced transition of the thin filament to a fully active state. The substitution V95A had opposite effects: increased actin affinity, increased the actomyosin ATPase activity above the level observed for wild type Tpm and increased cooperativity of myosin-induced activation of the thin filaments reconstructed with homo- and heterodimers of tropomyosin. Substitutions I92T and V95A were dominant, but the formation of heterodimers modified the effects observed for homodimers.  相似文献   

3.
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.  相似文献   

4.
Tropomyosin binds end to end along the actin filament. Tropomyosin ends, and the complex they form, are required for actin binding, cooperative regulation of actin filaments by myosin, and binding to the regulatory protein, troponin T. The aim of the work was to understand the isoform and structural specificity of the end-to-end association of tropomyosin. The ability of N-terminal and C-terminal model peptides with sequences of alternate alpha-tropomyosin isoforms, and a troponin T fragment that binds to the tropomyosin overlap, to form complexes was analyzed using circular dichroism spectroscopy. Analysis of N-terminal extensions (N-acetylation, Gly, AlaSer) showed that to form an overlap complex between the N-terminus and the C-terminus requires that the N-terminus be able to form a coiled coil. Formation of a ternary complex with the troponin T fragment, however, effectively takes place only when the overlap complex sequences are those found in striated muscle tropomyosins. Striated muscle tropomyosins with N-terminal modifications formed ternary complexes with troponin T that varied in affinity in the order: N-acetylated > Gly > AlaSer > unacetylated. The circular dichroism results were corroborated by native gel electrophoresis, and the ability of the troponin T fragment to promote binding of full-length tropomyosins to filamentous actin.  相似文献   

5.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

6.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

7.
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.  相似文献   

8.
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca2+ sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca2+ activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca2+ binding measurements. Ca2+ activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca2+ sensitivity observed in Ca2+ binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.  相似文献   

9.
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.  相似文献   

10.
Tropomyosin (TM) is a coiled-coil that binds head-to-tail along the helical actin filament. The ends of 284-residue tropomyosins are believed to overlap by about nine amino acids. The present study investigates the function of the N- and C-terminal overlap regions. Recombinant tropomyosins were produced in Escherichia coli in which nine amino acids were truncated from the N-terminal, C-terminal, or both ends of striated muscle alpha-tropomyosin (TM9a) and TM2 (TM9d), a nonmuscle alpha-tropomyosin expressed in many cells. The two isoforms are identical except for the C-terminal 27 amino acids encoded by exon 9a (striated) or exon 9d (TM2). Removal of either end greatly reduces the actin affinity of both tropomyosins in all conditions and the cooperativity with which myosin promotes tropomyosin binding to actin in the open state. N-Terminal truncations generally are more deleterious than C-terminal truncations. With TM9d, truncation of the N-terminus is as deleterious as both for myosin S1-induced binding. None of the TM9d variants binds well to actin with troponin (+/-Ca(2+)). TM9a with the truncated N-terminus binds more weakly to actin with troponin (-Ca(2+)) than when the C-terminus is removed but more strongly than when both ends are removed; the actin binding of all three forms is cooperative. The results show that the ends of TM9a, though important, are not required for cooperative function and suggest they have independent functions beyond formation of an overlap complex. The nonadditivity of the TM9d truncations suggests that the ends may primarily function as a complex in this isoform. A surprising result is that all variants bound with the same affinity, and noncooperatively, to actin saturated with myosin S1. Evidently, end-to-end interactions are not required for high-affinity binding to acto-myosin S1.  相似文献   

11.
The effects of ethanol at concentrations below 10% on the conformation of tropomyosin, its end-to-end polymerization, its binding to F-actin, and its effects on actomyosin ATPase activity were studied. Ethanol stabilized the tropomyosin conformation by shifting the helix thermal unfolding profile to higher temperatures, and increased the end-to-end polymerization of tropomyosin. Ethanol-induced changes in the excimer fluorescence of pyrene-tropomyosin indicated that its conformation was stabilized by ethanol both free and bound to F-actin. Effects of tropomyosin and tropomyosin-troponin on actomyosin ATPase activity were measured under conditions for which tropomyosin binding to F-actin increases the activity. Under conditions for which the binding of tropomyosin to F-actin is optimum, in the presence of tropomyosin, the actomyosin ATPase activity decreased as the ethanol concentration increased, further indicating that ethanol induces a structural change in the tropomyosin-F-actin complex. Under conditions for which the binding of tropomyosin to F-actin is weak (low salt or high temperature), addition of ethanol increased the ATPase activity due to increased binding of tropomyosin to F-actin. Thus, ethanol appears to modify actomyosin ATPase activity by increasing the binding of tropomyosin to F-actin and affecting the structure of tropomyosin in the tropomyosin-F-actin filament.  相似文献   

12.
13.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

14.
Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.  相似文献   

15.
Regulation of muscle contraction is a very cooperative process. The presence of tropomyosin on the thin filament is both necessary and sufficient for cooperativity to occur. Data recently obtained with various tropomyosin isoforms and mutants help us to understand better the structural requirements in the thin filament for cooperative protein interactions. Forming an end-to-end overlap between neighboring tropomyosin molecules is not necessary for the cooperativity of the thin filament activation. When direct contacts between tropomyosin molecules are disrupted, the conformational changes in the filament are most probably transmitted cooperatively through actin subunits, although the exact nature of these changes is not known. The function of tropomyosin ends, alternatively expressed in various isoforms, is to confer specific actin affinity. Tropomyosin's affinity or actin is directly related to the size of the apparent cooperative unit defined as the number of actin subunits turned into the active state by binding of one myosin head. Inner sequences of tropomyosin, particularly actin-binding periods 3 to 5, play crucial role in myosin-induced activation of the thin filament. A plausible mechanism of tropomyosin function in this process is that inner tropomyosin regions are either specifically recognized by myosin or they define the right actin conformation required for tropomyosin movement from its blocking position.  相似文献   

16.
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states.  相似文献   

17.
Tropomyosin (Tm) is one of the major phosphoproteins comprising the thin filament of muscle. However, the specific role of Tm phosphorylation in modulating the mechanics of actomyosin interaction has not been determined. Here we show that Tm phosphorylation is necessary for long-range cooperative activation of myosin binding. We used a novel optical trapping assay to measure the isometric stall force of an ensemble of myosin molecules moving actin filaments reconstituted with either natively phosphorylated or dephosphorylated Tm. The data show that the thin filament is cooperatively activated by myosin across regulatory units when Tm is phosphorylated. When Tm is dephosphorylated, this "long-range" cooperative activation is lost and the filament behaves identically to bare actin filaments. However, these effects are not due to dissociation of dephosphorylated Tm from the reconstituted thin filament. The data suggest that end-to-end interactions of adjacent Tm molecules are strengthened when Tm is phosphorylated, and that phosphorylation is thus essential for long range cooperative activation along the thin filament.  相似文献   

18.
Analysis of two recombinant variants of chicken striated muscle alpha-tropomyosin has shown that the structure of the amino terminus is crucial for most aspects of tropomyosin function: affinity to actin, promotion of binding to actin by troponin, and regulation of the actomyosin MgATPase. Initial characterization of variants expressed and isolated from Escherichia coli has been published (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Fusion tropomyosin contains 80 amino acids of a nonstructural influenza virus protein (NS1) on the amino terminus. Nonfusion tropomyosin is a variant because the amino-terminal methionine is not acetylated (unacetylated tropomyosin). The affinity of tropomyosin labeled at Cys190 with N-[14C]ethylmaleimide for actin was measured by cosedimentation in a Beckman Airfuge. Fusion tropomyosin binds to actin with an affinity slightly greater than that of chicken striated muscle alpha-tropomyosin (Kapp = 1-2 X 10(7) versus 0.5-1 X 10(7) M-1) and more strongly than unacetylated tropomyosin (Kapp = 3 X 10(5) M-1). Both variants bind cooperatively to actin. Troponin increases the affinity of unacetylated tropomyosin for actin (+Ca2+, Kapp = 6 X 10(6) M-1; +EGTA, Kapp = 2 X 10(7) M-1), but the affinity is still lower than that of muscle tropomyosin for actin in the presence of troponin (Kapp much greater than 10(8) M-1). Troponin has no effect on the affinity of fusion tropomyosin for actin indicating that binding of troponin T to the over-lap region of the adjacent tropomyosin, presumably sterically prevented by the fusion peptide in fusion tropomyosin, is required for troponin to promote the binding of tropomyosin to actin. The role of troponin T in regulation and the mechanisms of cooperative binding of tropomyosin to actin have been discussed in relation to this work.  相似文献   

19.
Many mutants have been described that affect the function of the actin encoded by the Drosophila melanogaster indirect flight muscle-specific actin gene, Act88F. We describe the development of procedures for purification of this actin from the other isoforms expressed in the fly as well as in vitro motility, single molecule force/displacement measurements, and stop-flow solution kinetic studies of the wild-type actin and that of the E93K mutation of the Act88F gene. We show that this mutation affects in vitro motility of F-actin, in both the presence and absence of methylcellulose, and the ability of the ACT88F actin to bind the S1 fragment of rabbit skeletal myosin. However, optical tweezer measurements of the actomyosin working stroke and the force transmitted from the rabbit heavy meromyosin to and through F-actin are unchanged by the mutation. These results support the proposal (Holmes, K. C. (1995) Biophys J. 68, (suppl.) 2-7) that actin residue Glu(93) is part of the secondary myosin binding site and suggest that myosin binding occurs first at the primary myosin binding site and then at the secondary site.  相似文献   

20.
Troponin extracted from rabbit skeletal muscle directly binds to an actin filament in a molar ratio of 1:1 even in the absence of tropomyosin. An actin filament decorated with troponin did not exhibit significant difference from pure actin filaments in the maximum rate of actomyosin ATP hydrolysis and the sliding velocity of the filament examined by means of an in vitro motility assay. However, the relative number of troponin-bound actin filaments moving in the absence of calcium ions decreased to half that in their presence. The amount of HMM bound to the filaments was less than 4% of actin monomers in the presence of TNs. In addition, actin filaments could not move when Tn molecules were bound in the molar ratio of about 1:1 although they sufficiently bind to myosin heads. These results indicate that troponin can transform an actin monomer within a filament into an Off-state without sterically blocking of the myosin-binding sites with tropomyosin molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号